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PROLIIIWATY RIPORT O HOUIOLOGICAL ALGZIDRA .

Comments of the writer. This report is baosed on +the forth~coming
boolz by Cartan and Eilenberg entitled "Honologsiczl Alzebra® (referred
to as HA). The arrongepent of the naterial is however considerably
different than in HA .

This being = Oth approximation of o plan, everything was onitted
that was not essential for the basic plan. The itens socrificed include

{a) The zeneral theory of functors, satellited and derided Ffunciors.

{b) The multiplicative theory. This onission is of course purely
tenporary as the multiplicative theory is essentisl and will have
to be reinstated. However,.in the writers opinion, the basic plan
can be seen cleorer without bringing in the nultiplicative theory

right awg
(¢} The cohonology theory of clgebras & la Hochschild. I+t is not

clear yet vhether this theoxy i

X
0

sgsentinl for Bourhaki.

%]

The report is devided into three chephers. The first one is purely
formal and is intended to include everyithing nesded in topological
homology ﬁaeory, except the Kunneth relstions. The second part deals

-

with the funcitors Ixt and Tor snd includes the Xunn

(."'l"

relations.

The third one is very skeichy and is intended 4o show hov the homology

and cohomology theories of zroups and Lie olgebres fit inte the schene

of Ch.IT. A separste report concerning these guestions will be needed.
411 the missing detailed definitions, statements and proofs will

be found in HA . Chapter ZIV of HA dealing with speciral scquences is

inecluded ss part of this reporit-
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Chagter I.

g 1. Zxoet seouences.

In this section excet sequences are introduced =2nd vorious formol
properties are estzblished. Ilogt of thesc propertics express therselwes
by nmeans of diagranrs.

Exarnple 1 (the five lenwa). Given = conrutative diagzran

J/ ! ! n, &_y J{h.ﬂa
W v v
B S B1 -aa30 i, B~1 —n B_Z

with exact rows, then

(a) Coker h, = 0, Xer hy =0, Ker h 4 =0 =FKerh_ =0

(b} Her b , =0, Cokern_

(=}

g4 = 0, Coker hy = => Coker hO =0 .

is en epimorphism 2nd

Corollery « If h1 and h_1 are isonorphisms, h2
sm .

h is o monomorphisn then h_ if an isonorvhis
-2 o
Exanple 2 . Consider o commmtative diagran

AY —> 4 ~A" —3 0
Jer Je e
~3 G1 = § ~3 O

with exact rows. One then defines o hoponbrphisnm

Ker £t —»> Ker £ —p Ker £¥ > Goker £! —> Caker £ -3 Coker f?
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3 2. Graded modules. |
A groded podule A is g direet sum Z Ai of nodules i = 0,

+1,+2 » ese o Convention Ai = a1, Amp £ :4-—-C of graded

nodules haos degree ﬁ if f(ﬂi) < citt

’ 11 ,05 3 ’i
4 n-tuple graded module A is @ direct sum 2, A

el

where it"“’in are integers. An n-tuple graded module defines a2
graded module by setting .

At = 3 g1t fgteecti, = 4
(in pratice, this summation is usﬁally finite). _

A map £ ¢ A —>C of n-tuple graded modules has degree (ti""’tn)
if f(Ai1""in) < Ci1+t1’.gﬁgin+tn . The integer % = t1+...+tn is
called the tofal degree of £ .

A podule A (non-graded) may be regarded as an n-tuple graded module
by setting & = 497°°*% | 4 singly graded module A may be regarded as
a doubly graded module in two ways :,Ai’o = Ai or A°’i = Ai .

The notion of 2 graded module can be generalized. Instead of using
integers or sequences of integers as dezrees, we ean sssume that the
&egrees belong to o commutative group G . For later purposes the group
G must be given together with o homomorphism 4T G»-e>22 ealled the
parity funetion.

§ 3. Modules with differentistion.

A differentistion 4 in 2 module 4 is an endomorphism satisfying
dd = 0. Introduee notation
Z(A) = Ker 4 " Zt(A) = Coker d
B{A) =In 4 s Bi(A) = Coim d .
H-B ¢ Ve have B(A) & B¥(A) but the identifieation should not be mede.
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The differentiation d admits a faoctorization

A->Z'(A) —» Bi(A) —> B(A) —> %(A) —> 4 .
From this diogram we obtain the maps
0 — B(A) —»Z(A) —>Zt1(4) —>Bi(A) —= O
which form an axact sequence. Define homologzy module

 H(A&) = Z(&)/B(A) = Ker(Zt(A) —>3Bt(4)) .
There resulis exact sequence |

0 —>H{A) —> 2 (4) EA:% Z(A) —> H(A) —> 0
where Efis induced by 4 . )
| Let 4 and C be nodules with differentiation (both denoted by d).
Amap £ ¢ A —=C is 2 module hoﬁomorphism such that af = f£d . 4 map
f induces maps Z(£) ¢ Z(A) —>3(C) 0.« H{£):H{4) —s H(C).

Let £,z be two meps A —>C . A homotopy s ¢ £~ g is g homomor-
phisn s ¢ A-—s-ci such that ds + sd = g-£ . If f and g are homotopie
then H(£) = H(g) .

A module A& without differentiztion moy be regarded as o module
with differentiation zero. Then Z(A) = Z'(A) = H(4) =4 , |
B(Az = Bt(A) = 0. 1If A is 2 module with differentiation then %(A4),
B(A), Zt(4), B'(A), H{A) are modules with merc differsntistion.

Let

0 At —h —2AY @
be an exact sequence of modules with differentistion. We consider the
commutative diegrem ) _
Zt(A') —> Z'(A) —>21(4A") —> 0O
|7 J& |2

0 -—>Z(A?j — Z(A) —> Z{AM)
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and prove thzt the rows are exazct. Now apply Ewzmple 2 sbove. There
results a nap '

A ¢ E(An) —> H(AT)
called the connecting homomorphism and the seguence

coe —3 H(A1) —> H(A) —» H(AW) é_}sa(u) —> E(A) —> H(A") —> ...

is exact. This is the homoiagg seguence.

Iz
¢ '_$>§‘ -eﬁ'i_-e>Aﬂ —=> 0
0 =0t w0 ~—=09 —= 0
is o commutetive diagram with exset rows, then the diagram

cee —H(AY) —H(A) —H(A") —>H(AY) —H(A) —> H{A") —» ...

l Voo | Lo

cee —pH(C') —=H(C) --,»Hécw) —> H(C!) — H{C) — H(C") . ...
is commutative.
Behavior of sbove operators with respect to sums, products, snd
limits.
3 4. Gomgle#es.
A complex is & graded module with a differentistion 4 of degree + .
Then Z(A),...,H(A) are groded modules. The natural isomorphism
Bt(A) & 3B(A) has degree +1 and this is the reason for avoiding the
identification.
Uaps £ ¢ A ~>C of complexes will always be assumed 4o he of
degree 0 . Homotopies have degree ~1. The homology sequence takes the
oo~ EMAY) —ER(4) —pER(4N) 2, B ey w1y 5 L., JLorn
An n-tuple complex A is an n-tuple graded module with endomerphisms

dysees,d, such thet
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(10) di has degree +1 with regpect to the index i and has degree zero
with respect to other indices.
e B
(27) didi = O

O
(37) didj + djdi

It follows that the assoclated graded module is a complex with the
total differentiation 4 = d1 Fooot dn »

= 0
- °

flaps £ ¢ A —>C of n-tuple conplexes arc assunmed to be of degree

(Oyee.,0). If £ and g are two such maps we define 2 homotopy (31,»‘-,sn)g

£ g to be 2 seguence of homomorphisme s.8 4 —>C i=1,...,n such that

58
{?O) S has degree -1 with respeet to the index i and has degree zero
with repsect to other indices.

(2°) disj + dei =0 for i# j
(3°) > ds8; + 8,4y = £-g . |

It follows that s = xa:‘!+...+s!1 satisfies ds + sd = £-g , s0 that
we obtain g homotepy in the asscciated cémplexes‘

If A is an n-tuple complex, then we use the syrmbel H(A) to denote
the homology module of & relative to the total dififerentistion operator 4 .
In gddition we may consider the homology module H(i)(A) relative to the
differentiation operateér di - The module H(i}(ﬁ} is n-tuply graded znd
further éi,.‘e§éﬁ induce in H{i)(é) the structure of zn n-tuple

complex with i-th differentiation operator zero.

In particulgr if 4 is = double complex, then we have the graded

module H(A) =né the double graded nodules 5(2}3(1){A} and H{1)H(2)(A)s
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3 5. Filtrations and spectral seguences.
This question has been treated at lenght in Ch.XIV of HA. This
chapter is attached as part of this report. ~
§ 6. Hon 2nd & .

Let 4 and C be left A -modules. Ve shall write Hom A (4,C) gor
the group of A\ ~homemorphisms A —>C . If A is a right A —-nmodule

and C is a left A -module we consider the tenser products A @AC N
which is an abelisn group.
Induced homomorphisms, i.e. Honm A snd & A Bre functors.
Behavior with respect %6 sums, products =nd lipits.
Behavior of Hon A and @ A with respect exact sequences
If A" >4 A" -0 agnd 0 —>Ct —> ¢ —» C% are exset then
0 — Hom{A",C) —> Hom(A,C) —> Hon(L!,C)
0 —>Hom(4,0t) —> Hom(A,C) —» Hom(4,Cw) ‘
0 — Honm(a",C!') —p Hom(4,C) — Hom(4!,C)+ Hom(A,GQn) |
are exact.
If AY A ~» A" — 0 gnd C! - ¢ —> 00 — 0 are exact then
'@ C —= A®C —» A"@( —0
A @C - 1®C — ABCT —0
'@ C —2> A &C -2 A R0 > AT @G —>Q
are exsct.

$7. Graded modules.

er the doubly graded groups

e

Let A and C be graded modules. We consi

DP:4 o Eom 5 (4,,6%) = Hom , (472,0%)
{note the change of sign on the coniravarisani variable)}. This doubly

&

raded group is denoted by Hom, (4,0), but is not the group of sll
&L o ;ﬁi 2 2 =1
=3

homomorphisms & ->C . The associsted graded poéwdec also is denoted by

s 4 ﬁ 7 s
Hom , {A,C). Firvg

A
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Let £ At —>A | gs C —>C* be paps of dezrce r and respectively.
We define the map
Hom(f,g) ¢ Hom(4,C) —> Hom(A?,Ct)

of degree (r,s) as follows : If ¢eDP*%je. o A_—>C% then

B
Hom(f,g)0 = (-1)psgq9£p+r : A§+r —> (12¥8
This rule is easier understood on the tenser produet. If
f: A — A", gs C —>C! are naps of degree r and s respectively, then
T s A&C —> A' ®C! is 2 map of degree (r,s) given by
(£ ®g)(a® @) = (-1)P%2a? @ ge?
(note that &P and g have changed places ! ).

If A and V are gomplexzes then Hon A (L,C) iz a double complex

with diiferentistions

d; = HomA. (dA’c) s 8, = HomA(A,éc) .

Toté that these differentistions anti-commute as required. Further,
the total differentiastion is the usual one (sign included). Similarly
A ®C is o double complex with |

éizﬁﬂﬁc . d, = 4 ®dy -
The total differentistion 4 = d,+d, satisfies

aaP @ c?) = (22P) @ % + (-1)Pa¥ ®act
as usual.

The obove nseds to be generaliged ¢ If A is =n k-tuple complex

and C iz a 1-tuple complex then Hon{A,C) and 4 &®C are (k+l1)-tuple

corplexeasg.
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J 8. Homoporvhismes o and af .
MM&’

Let A and C be conplexes. Defins homonorphisnms

ats H(Hom 4 (4,0)) —> Honm , (H(4),E(C))
a ¢ H{A) @iA-H(C} —> H{4 QBKG) .

These homomorphisms have +he following basic properties
{1%) o 2nd «t are natural relative 4o maps of 4 and C

@

(2°) « and o' are ldentities if 4 and C have zers differentistions.

These twWo properiies charscterize o and af completely. Further impor-
tant properties are commutstion rules with conneecting homomorphisms

For instance, if 0 —>0f —> ¢ >0 —3 0 is an exact sequence.
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Chapter II.
8 1. Projective and injective modules.

4 module A is projective if given any homomorphism fs 4 —= 3% and

any epinorphism g¢ B —=>B" there is 2 homomorphism h: 4 — B with
£ =goh .

Bguivalent nroperties s
(1%) 1z &t B —»B" is an epimorphism then He;mA(:&,g): Hom-)L (4,B) —=

—~> Hom (4B7") also is an epimorphism.

(2°) I 0 = C'—>C —>C" —> 0 is exact then
C—>Hom(&,C') —Hom(A,C) —> Hom(A,0") —» O also is ecxact.
(3°) If £: K —> L is an epimorphism the Ker £ is = direct summand
of T .
(4°) A4 is 2 direct summend of & /L -free module. |

A direct sum of -modules is' projective if and only if each
member is projective.

There is z duzal notion of an injective module. 4 module & is
injective 4if given any homomorphism £: BY —> A and any monomorrvhism
g: B* —> B there is g homomorphism h: B ~> 4 such that £ = hg .

Equivalent properties : |

(19) If g: B! —> B is = monomorphism then EomA(g,A)z Hom , (B,A) —>

A
P HomA (B'4) 4is an epimorrphism

(2°) I 0 — Bt —> B —>B% —> 0 is exact then
0 — Hom{(B",A) — Hom(B,A) —> Hom(B',A) —> 0 gzlso iz exact.

(3%) T2 2:4 -+ is 2 monomorphism then Im £ is g direct summand
of & .
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(40) Given o (left) idezl I of J\ and 2 honmonorphisn £: I —» A there
is an element a €A such that £i = iz for all i1€I .

The topologicel anzlogues of injective modules are the absolute
retracts-

Basic property : every module is 2 quotient of o projective module
and is 2 submodule of an injective noduie.

If &4 is = projective gadule and C is g complex then
@' ¢ H{Hom{A,C)} &4 Hon(A,H(G))
and similarly for o and @51 .
If € is an injective nodule and 4 is o conplex then

@' 3 E(Hom(4,C)) & Hom(H(A),C)

3 2. Resolutions.

A projective resolution X of A is a conplex
P "‘"‘>Xn —_— cee *——9}{@ b G ”“'ﬁ"@ — seo
couposed of projeetive nodules and g msp

—2> X —> .o —>X —> X —s 0 —>0

| | ]

— 0 —2 ... —0 T2 f = 0
called the augmentation, such that € indnces an isomorphisn H{X)mH{A)=A .
This is equivalent with the exactness of the seguence

&
e e s "%}}‘z _'@g;.‘; PR =~—=§>X,§ "‘%X@ ""”% é ——— G """ﬁ e e e

I

Injective resolutions are defined similerly : reverse gll arrows

ihere is z vhole body of propositions conecerning projective and
injective resolutions (see HA Ch.V). The moin ones sre : projective

resolutions axist for any module and tvwe projective resolutions of the
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same module have the same homotopy type (i.e. thers exist mops
ps X = X' apd ¢ ¢ Xt —> X sueh that the conmposition Yp and ¥

are homotopic to the identity maps. Sinilarly for injective resolutions.

3 3. Ext and Tor.

Let & and G be ‘A -modules, let X be a projective resolution of A
and T and injective resolution of C . Then Hom (L,Y) is = double
complex whase homology module is {(up to eanom.cal isomorphisms) inde-
bendent of the choice of Xand Y . We define

ox .A. (4,0) = H(HomA(X,Y))

This is 2 gzraded module. In addition to the usual functorial properties

(contravarisnt in 4 ang covariant in C) we define connecting homomor-

phispms ¢ for each exact sequence 0 —»A! —3> A — 4% —5 0 4ge have

a homomorphism Ext A (At ,C) —> Ext A (An,0) of degree +1 s for ezch

exact sequence 0 —> 0! —> ¢ — 0" —> 0 we have a homokorphism

ExtA (4,0") —> Ext(4,07) of degree 1 . The following are the main

properties of ext.

(1) TFor esch exset sequence 0 ~>At -—}A —> A" — 0 the seguence
-—-a-Exti (A,0) —> ExtP(4,0) — ExtP(41,0) —s BxtP*! (an,0) s ...

is exact.

(12} PFor each exsct sequence 0 —=C! —>(C —=(0% —> 0 +he sequence
oeo —5> ExtP(4,01) — ExtP(4,0) —» ExtP(a 0") — Ex4P(a,00) — ..,
is exazet.

(2) Extf (4,6) = 0 for p <0, Exti (3,0) = Hom,(4,C) .

(3) Ezti (4,0) = 0 for p > 0 2nd A& oprojective.

{32) Extfx (4,C) = 0 for p >0 2nd C injeetive.
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Properties (1), (2) and (3) (or (1a), (2) and (3a)) together with the
naturality propertics yield an exiommtic deseription of nxtA °

DxtA(A C) was defined bj taking resolutions of both A and € .
It suffices however %o resolved only one of the varisbles. Ue have

H(HomA (X,C) & ExﬁA (A,C) X HiHcmA (4,7)) .
- & sinilar discussion applies t6 4 @ C . Here we tale projective
| resolutions of X and Y for 4 and C . Then
”arA(A,C) = H(X @AY)
is essentially indemnendent of X and ¥ . The Dropc ties of Tor are similar

%o those for Ext.

9 4. Dipension.

Ihe projective dipension of = module & is < n if there is a projective
resoclution X of A with Xn+1 = 0. The projective dimerzion of A is =zero
if 2nd only if & is projective. Injeetive dimension is defined simiiarly,

The left gleobal dimension of a ring A is the meximum projective
dimension of left A -modules. The same definition is obtained using
injective dimension. Righ?k global dimension is defined using right
A -modules. The %wo dimensions coincide in o number- of specigl esses,
but the general guestion is open.

The gquestions of dimension are intimetely connected with the funciors
Ext A" Indeed

projective dimension 4 < n &> EX’EA (4,C) = 0 for 211 C
injective dimension € = n <> Exﬁﬂ?ité L) =0 for 2ll A
left global dimension < n @Extf{" =0 .

The following properties are equivalent.
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(1)  left global dimension A = 0

3

(2) every left A -module is projective
(3) every left A -module is injective
(4) every submodule of a left A <“module is = direet sunmand
(5) every left JA_~module is o direet sum of sinple A -modules
(6) every left ideal of N ois s direct sun of simple A -modules.

These rings sre called "seni-simple®, and have a struchture theoren
showing that the right zlobal dimension alse is zers.

The following properties are equivalent.
(7)  left global dimension A < 1
(8) every submodule of = projective left /| —module is projective
{9) every quotient module of an injective left Ji—zwdale is injeetive
(10) every left ideal of /A is projective.

Sﬁch rings are called hereditary.
For integral dommins Yhereditary® = Dedekind .

3 5. Khnneth relations.

4 projective (injective) resolution of = module 4 is s complex .

- It is natural to expect that the projective (injective) resolution of
a complex should be o double complex subjected %o various conditions.
For o definition see HA , Ch. XVI. V

Let A and C be complexzes, X a projective recolution of A and/ﬁtan
injective rescluton of C . Then E@mji(X,Y) is 2 guadruple complex .
We regard it as s double complex by grouping the first index with the
third éﬁé second with the fourth. 411 the invariants of this double
complex are idependent of the choiece of X and ¥ . The terms EZ for the

two speetral sequences can be copputed and yield
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(Z,Y))

X Dy d =5 mn
{1) H (k'l;!1 (4,C)) " H (Homn
(2) Zh TN | pZ == o,y
piimymp IXER (Hp (4),E°(0)) T EHen, (1,7))

These are the most general Einneth relations. If we assume that in
(1) a1l terms with q >0 vanish { e.g. if A is A ~projective or C

is N _injective) then the sequence (1) collapses and (2) becomes

- 2 - P, —
“ 3t q 2 T"‘n T
{(3) D) +Dy=0 Fo 7). (Hp? (4),2 “(C)) o E(Zon, (4,0))

I further A is hereditary, then in (3) all terns with g > 1 are
zero and the spzetral sequence {3) reduces to the exaect seqguence
i

(4) 0 —>Zxt! (IZ(A),E(C)) — H(IzonA(A/,C)) i.—> EonA(H(A),H(G)) — 0.

A similsr dGiscussion applies to A Q.A C using projective
resolutions X and Y of the complexes 4 and G . Te obtzin

A

% In @ -
{(1¢%) I—EP(.Lorq(A,C)) 3 B (X @AY)
(21) 2, . = - “

D, +9,=D _z.orq(Hm (A),Hpe(c)) q Hn(zx @AY) "
If terms in (1!) with ¢ > 0 are zero then (2') Dbecones
> Y . o

(31) D7 +D,=7 iqu(E‘ly? (A}’?szw)) -a:?ﬂ H (A %c)

If A is hereditary (3') reduces %o the exact gseguence

(4') 0 —E()® H(C) 55 5 @

1 .AC) —> Tor, (H(2),H(C)) —0 .
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Chapter III.

1. X-alpgebras.

In thié .part we assume that the ring /| is = X-2lgebra vhere K is a
commutative ring i.e. that s ring homornorphisn VK K —PA is given
such that P (K) < Center 4 . ,

& complemented algebra is a K-algebra A_ which is projective 28 a
K-nodule and for which s ring‘hemomarphism £ 3 ﬂ —= K is given
such that the composition X 2—>A 4&—:5- K is the identity. The kernel
of € is 2 tve sided‘ideal I (c2lled the augmentation ideal or the
conplementary ideal) and s g Komodule _A_ is the direct sum I + X .

The pap € is called the gusmentstion and induces in X the structure

of a left (and right) A ~module.

The honmology and cohomology groups of _/\_ are defined as
Hn(./‘. A) = Tor'g'(A,K)
A L0) = Ex‘bﬁ‘ (K,C)
where A is a right A -module and C is a left A -module. If X is =
M -projective resolution of K as a left A -nodule then
B (A,8) =5 (4 @ﬁ\‘ X)

EHALC) = EHom 4 (E:0))
Por variocugs slgebres jg "fnice® complexes X may be chossn. One séch
complex is the standard complex S(_&) which can be construected for
any complemented ring A . We define

sly= Al @®1®...81 (@ =8 ;)

n-— ti‘ﬂf‘seé
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4 typical element of Sn(JL) will be written as _
_A.'gi,]’n-a,i ] Ae A; ijéI °
The differentiation is defined as .

d‘)\'i‘l’“‘ogiﬂ_ = -A-d(i19~ac 9in)
. ‘ n-4 : S .-
d[i,’,ocoﬁin‘] = i?(izsoebgin) + 2.2-4 (‘-1)'3(119“‘6”13154'1g“"in) ®

If we denote

[]\T,m,){n] - (At'a‘A'?"”;'A'n“s"\-n) )x,iej\.

then :
6.[./\.1 ,...,J\_n] = 'A"{["A'Z"“"A'n]

+ 7 {-1)4 [J\?'so.f,,_,&_jimgm?ln}

_ R [A e, ] ey
Tet 7? be a2 {multlplieative) group. Ve define A = E(T) to be the
K-algebra of 1? . Then a J\ -module is z K-module on which 9~ operates
»as a2 group of a»eadomcrwhigms» We convert A inte 3 complemented
Ki{glgebra by sétting e&x =1 for ze . The hcmalsgy and cohomology
groups of this complemented algebrau%? are then the homolegy and cchomology
groups of I A

cebras.

Let L be g Ldie algebra over kK vhich is K-free. Ligy J@aﬁ E(L) be the
enveloping algebras of T . Then a left A -module is a represen%atieﬁ of L
and vice versas. J@. is camglemented by setting €ex =0 for z €L . Again
the homolegy and cohomology groups of /i are the homology =nd cohomology

groups of the Lie slgebrs L .

=

o
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1T, ABELIAN CATEGORIES
l. Definition.

Let A be a category such that H(A,B) is an abelian group, for any object

A,B £ A. We shall say that A is an agbelian category if the following axioms

holds

(A.1) The composition H(B,C) XH(A,B) > H(A,C) is bilinear.

(A.2) For every u: A —> B, there exist maps € 1 NGO . i
D xtmage {‘m COUMAER *6n Aghiugganty
+ v W z ol ' sbond
c>25p585E £ coneyeun:

such that u = wv and for each X £A the followin seqﬁ.ences are exacte
0 = H(X,6) = H(X,A) = H(Z,D)-
0 - H(X,D) = H(X,B) > H(X,E)
0 = H(D,X) = H(4,X) = H(C,X)
0 > H(E,X) = H(B,X) - H(D,X).
(A.3) Given &y, A, £ there exists A e A and maps
B =N A P \ Qo dwutle
such that
Prlg =lgs Bl =ly, B 0P, Ap t hom Tl
The axioms are self dual and thus A” also is an abelian category.
It follows from (A.1) that H(4,A) is a ring with 1, as unit. Each H(A,B)
is a right H(A,A)-and a left H(B,B)- bi-module. The composition is a mep
H(B,C) ®H(B,B) H(4,B) = H(A,C)
and is a left H(C,C)- and righf H(A,A)-homomorphism,

Proposition 1. For any A e A the following properties are equivalent:

(1) 1p=0

2) H(A&,A) =0

(3) H(A,X) = 0 for all X
(4) H(Z,A) = 0 for a11 X.
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Proof.. Trivizl,

An element A having the properties listed in the proposition is called a

zero elementy notation A = 0, If A' is another zero element then the map
Ot A = A' is an isomorphism. Thus all zero elements of A form a clsss with

unique isomorphisms. The existence of zero elements will be proved as a con-

sequence of (A.2).
ndady

Proposition 2, A monomorphism us A => B is zero ifYA = 0, An epimorphism

(RS
W)}
i

ze

=

vy A > B o 4f and only if B = 0.

Proof, If u =0 thenH(X,A) > H(X,B) is zero. Since it alsc is 5 mono=

morphism it follows that H(X,A) = 0, i.e., A = 0. Conversely, if A = O then

-

u = 0 because H(A,B) = 0. 8Second half is dual.

@
9
7,
O]
I

rnels, images, etc.
We now pass to a discussion of (A.2). We note that t and w ars monomore
phisms and v and z srs spimorphisms. Further since the sequence
0 > H(G,C) = H(C,A) => H(D,A)
is exact it follows that
vt = 0, ut = G,

zw = 0, zuo = 0,

Proposition 1. OConsider a commutative diagram

U

T
g L L b
At —""’% B!
u
and iet _
TPELE NPT N P I
o> at Y pr Wy pr B m

be meps given by (A.2) for u and u'. Then there exist unique maps
c: € > G, d: D= Dpt, e: E - E!

such that the diagram

™
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is commutative,
Proof., 8Since ut = 0 we have O = but = ulat = wivlat. However w! is
a monomorphism and thus v'at = 0, Since the sequence

0 = H(C,C') = H(C,A') = H(C,D')

fedo
s

exact and the element at € H(C,A!) yields zero in H(C,D') there exists a

b

unigus ¢t € = C! such that tlc = at. The existence and uniqueness of etE > E
is dual.
Since zw = 0 we have O = ezw = z'bw. 8ince the sequencs
0 = H(D,D!) - H(D,B!) = H(D,E') )
is exact and the element bw £ H(D,B') yields zero in H(D,E) there exists a
unigque 4 € H(D,D!') such that w!d = bw. Now we have
wiviag = u'a = bu = buvr = widv. e
Since w' is a monomorphism i1t follows that v'a = dv. The proof is now complete,
Gorollary. If in Prop. 1 & and b are isomorphisms, then ¢, d, e ars
also isomorphisms.
In particular, applying Prop.and Cor, to the case A= AL B = B', a =1,
b = 1p we find that the monomorphism classes % C — A and wz D ~> B are uni-

guely determined by u. Similarly the epimorphism classes v¢ A = D and

7zt B => E gre uniguely determined. We adopt the following terminology:

Ker u = class of %,
Co-im u = class of v,
Imu = class of w,
Coker u = class of z.

Proposition 2. The following properties are equivalent:

(i) u is a monomorphism;
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(2) C=0 (i.e. Ker u = 0);
(3) v is an isomorphism (i.e. Co=-im u = 13
(4) nm=1Imua (i.e. u is an element of the elass Im u),

Proof. If (1) holds then H(X,A) = H(X,B) is a monomorphism. Therefors
H(X,C) = 0 and C = 0, If (2) holds then H(D,X) —=> H(A,X) induced by v: A > O
is an isomorphism. Thus by v is an isomorphism. If (3) holds then we ngy
replace D by A so that v = lpe Then w = u, which is then sz monomorphism.

Proposition 2*{d‘ual). The following properties are equivalent:

(1} uis an epimorphismg_
(2} E=0 (i.e, Coker u =0)s
{3} wis an isomorp‘i;ismg

(4) u = Co~im u.

Proposition 4. The following properties are equivalent: ‘ EVT
(1) uis an iscmorphisms » (g,&\\'t‘ ne CLQ{Q"M\
(2) u is 2 monomorphism and an epimorphisms . CC&Q&(,\%

{3 6=02and E=0,

Proof. The implication (1)=> (2) is clear while the implication

(2)=> (3) follows from Prop, and Prop. . If C = 0 then v is an isomorphism
gnd if B = O then w is an isomorphism. Thus if C = 0 and E = O then u = wv

is an isomorphism.

not empty) abelian category contains zero objects.
(o aceonagom L (telite |

(@]
O
(2
O
I
fd
3]
g
E
i
s
[0
L3
<

ketch only).

o

s, u.ﬁ U =] u°+1 ° o
(ﬁ} f&i = > A(c = £ J-> e ee _'> Aj;_l'-l-'—‘;} Aj, J g :L’
is cglled exact if for every n such that j < n < i we have

Ker uy = Im u,q.

The equaliity is understood as a monomorphism class in M(An:,%y Dual and egquivalent

S
definition: d/
€2 5cut s, né% [

iyt % 4’1

L
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t\%\-%
Co-im u, = Coker u,,q. " ‘.Lvﬁ*(*aléi‘ de AT\
Hers equality is interpreted as an epimorphism class in E(An)w
Proposition. A sequence O > A! - A —> A" ig exact if and only if
0 > H(X,A') > H(X,A) = H(X,A")
is exact for every X.
Proposition, A sequence A' -> A = A" — 0 is exact if and only if
0 = H(A" . X) = H(A,X) = H(a',X)

exact for every X.

I
i

Proposition. A map u: A' —> A is a monomorphism if and only if
;o B
00— A —> A
is exact. There existsthen an essentiglly unique epimorphism v: A ~> A® such that
1B Yo pm ‘
O—=> A" => A —> A" —> 0
is exact.
Propogition, dusl.
Proposition. In the sequence v
ra . ui.
(ﬁj A" _'>A° __'—>vmﬁo _‘;>A°
€L ek J
consider for each n, j £ n < i the factorization
Vo oo Wne
Ay == 2, 4 -—égvﬂn;l, B, SWaVE
where v, is an spimorphism and W,.7 1s a monomorphism. The sequence (&) is
exget if and only if each of the ssquences
o>z Mg 5
1 = n=1
is sxact for j < n < i,
This 1gst formulstion is self-dual.
Proposition. For every mep u: A - B we have the exact sequence

0>c 320283525530

given by (A.2).
Le Direct sums, productse

Let usz A; —> 4, L&l

D
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We shall say that the u; are a representation of A as a direct sum of A5

if for each X the map

ol o b rotmdinl e criitrel
H(A,X) —> TT H(Ai,X) C %’\ %Q.\’\Q\CLC' @t G
el e §:
v —> {vus}

e

given by

is an iscmorphism.

Elementary properties of direct sums,
1)} There exists a unique set of maps

v4e A —> Ai
such that
Vils =1Ai’ | viuj' = 0 for 1 # j.

Indeed, take X = A; above and consider the element of TJT H(Aj sAs) with

i=th coordinate lA‘i and all others zero.

2

S

a9 2 . | 3.2 2 2 2
BEach u; is a monomorphism and each vs 1s an epimorphism.
Indeed; let wyw's X => As and assume usw = usw'e. Then

. = o Tl = ew! = 1
W VeUsW vlulw W'e

1%
Similerly for vi.
3) Let

7.8 A Lo g g
uss A; = A4, ‘uleA:.,L —= A

V)

be direct sums. Given any set of maps

We o o ogv’
wss By > A

thers exists a unique
we A = A
such that egch diagram
W
Aj‘_,“‘% Al

- .1
ull/ l U3

L —>u

o
[e]

commutative. Then elsc vs'w = Ws¥se W is an epimorphism if and only if each

=

i

ise If w is a monomorphism then each wi also is a monomorphism,

Duel definition and properties of direct products vss A —=> As.
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Proposition 1. Let I be a finite set a;d consider maps
g BT g
viuy = 141;  Giﬁ5 ;%Cﬁtfor A 29,
Then the following properties are equivalent:
(i) The wu. yield a direct sumg

ii) The vs yield a direct products.

awn 22 TT 8A,5)

il

given by @w = {wu} and §{us} = %‘w.va Then you
= l, =, and $¢{@i} = m(? wjvj), {(E‘w;v )ul}

is an isomorphism, and (i) holds.

u{wui} T owusvs =W D ugvs
Jusviust = {wi}a Thus @

1]

i.]c

The equivelence (ii) <=> (iii) is dual.
Axiom (A.3) asserts the existence of a direct sum (and direct product) for
any two factors. This implies the existence for any finite number of factors.

There are eas;vaxamp_keu where 1nf1n1te dlrect ‘sums or products do not exist.

Lt

%

s > ¢, Le I

be direct sum representations. Suppose that for each i ¢ I we have maps

A858-Bhg 50

n
[0}
LO

is exact (where g and b are defined by a3, bi) if and only if each of the uences

8l gbPlgn .

e
{n
M
]
A\
¢
ot
L)




Proof. The sequence A => B —> € > 0 is exact if and only if the sequence
0 > H(C,X) -> H(B,X) = H(A,X)
is exact for every X. This is equivalent with the exactness of the sequence

0 >TH(Cs ,X) ->TIH(Bs,X) —>TH(A4,X) | Pews ‘3&’"’
which in turn is eguivalent with the exactness of each of the sequences ; Vrew el
Qs et danedte

(e

0 _% HCG:‘L,X} _> H(Bijigx) ’9 H(Ai,X)wi

2
an
ot
g
n
ct

t condition is equivalent with the exactness of
A3 > Bs > €1 > 0. ‘ .
Proposition 3., Let
ul " .
At %? A —> A"

be such that viu! = i‘%.Ag o Then *the’ following conditions are equivalents
, 20 - " .
(1) The sequence 0 —> Af—3> A —> A" -3 0 is exact.
(11} Thers exists a map u®: A% —» A such that v'a' = Lpws u'v! + ulv® =1,,

vyl = 0, viu® = O,
{4i%) The maps v!, v® yield a direet product representation of A.
(iv) For every X the ssquencs

0> HXA') = H(X,A) > HE,A") > 0
induced by ul! and v" is exsct.
Proof. (i) => (ii). It follows from (i) that the sequence
0 > H(A",A) = H(A,A) > H(A',4)
is exact, In H{A A) consider ﬁhefﬁélement 1p- ulv'. Its image in H(A',A) is
(g =avt)u! =u! =uviu! = u' -u = O,

Thus thers is an element u® € H(A",A) such that u'v" = lA - u'v!, Consequently
(&) ulv! + uv" = 1.

Bpplying v® on the left we find

vighy® = M,

Since ¥" is an epimorphism we have
e
' H"V” = 1Aﬂe
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Multiplying (&) on the right by u" we obtain u!v"u" + u"v"u" = u", Since u""

= lgu, it follows that u'v"™u" = 0, Since u' is a monomorphism, we have v"u® = O,

(ii) => (4ii) follows from proposition 1.
{iii) <> (iv). Consider the diagram

0> H(LA') —> H(X,A) —> HX,A") = 0 ’
, e | -

0 > H(X,A") = H(X,A')+H(X,A")-> H(XLA") > 0
where @z = (viz,s 4) and the remaining maps are the obvious ones. The sscond
.sguare 1s glways esmmu%atiyas The first square is commutsative becauss viu! = 1Aﬂe
Since the lower row is exag-‘t;‘it follows that the upper row is exaszt if and only
if @ is an isomorphism, 1e if and only if (iii) holds.

{iv) => (i). Since (iv) holds for each X it follows that the sequence

0 > A-Bls 5 T pw s exacte Thus ws only need to show that v" is an epi-
mor’pﬁism@ This follows from (iii) and"elezﬁeﬁfary property Ze

Proposition 4. Given
uls Al'=> A

the following properiies are equivalents.
{1) There exisis v's 4 —> A!' guch that viu! = pee
(i1} Thers exists u": A! —> A such that u',u® yield a direct sum decomposition of A.
(1i1) H(AX) -> H(A',X) induced by u¥ is an epimorphism for all X.
Proof, {(i}=> {ii). Given ﬁé',ﬁ* s let v#: A => A" be the cokernel of u?,
hen the ssquence A! LR --> A" => 0 is exact. Since viu! = Ip:s 1t follows
that u' is g monomorphism and thus (i) of Props 3 holds. Consequently (ii)
holds and u',u" ars a direct sum rﬂpresentatlon of A.

{ii}=> (4ii). This follows from the dual of Prop. 3, implication

{3ii)=—= (i). Since H(A,A*) > H(A',A') is an epimorphism there exists

£ H(A,A') such that viu' = 1.




Definition, If the conditions (i) - (iii) of Prop. 4 are satisfied, ws
shgll sgy that u's A' => A is a direct summand of A.

5. Split exact sequences. " . :
Aoondee ,%ASACQZL

Consider an exact ssquence A

_;.Ai_-}-}Ai_l—?‘-—l;.“, =< 1< .

o
=t
g

o

For each i, consider a factorization
¥ We =
i -1 it
Ai > Zic‘lm_; Ai’ ug = \"’:'1 . (ji,

-1 is a monomorphism. There result exact

(23 0> 23 S 4 57, . > 0.
Pr:n sition 1. The following conditions are eguivalents

i) For each X £ ¢A the sequence H(X,A) is exact.

{3%Y For esch X £ A the sequénce H(A,X) is exact.

(11} Each vs is a direct factor of As.

(13%) Each s is @ direct factor of As.

(431} Thers exist maps s33 Ay > A5 (-0< 1 < o ) such that

Uge]185 4+ S»_l?li = J_Ai@
Proof. (1) => {ii)}, We consider the exact sequencs

(ZssAgeq)—> H(Zg,84)—> H(Z3,84 7 )

W
8
Qe
ey
i)
0
[
b
i
.
0]
o
I 3
po

of H(Z;.hs,7), and there exists z € H(Z;,A5,7) such that ug 2

o < &

monomorphism

-t
Uz
0

\Tiui,lz = ln e

1

Thus, by 4, props 4%, v:.1 1s & direct factor.

(15) = (441). In view of 4, Prop. 3% there exist maps

Zs €&— As €<— 2, -
= ;’?ﬁ_ L :‘Ti i=

P
=

o
SA

7{ < = P s e Yo
e.hgzi,Ai)g We have usws = O since wy = Ker ug. Thus ws is

s ®
1.
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such that
W oo — 1 X e r oy S — o |
WiW lzi’ ViVy 1Zi~1’ WiWs + V3V 1ase
Set;
Sg Via1Wit Ay > hyoqe
We hzve
M. 8% 8 «Hs T oVs ,a Ve aWed VoWe o We s B WWe + VoV = 1
.1 % B Sl T s | TiV347 V4117 ViV Wea1V s b L G T Y

(1i1) => (i). For X € A consider the maps

= a5 d us!
H(X,A149) 5> H(XA;) —=> H(X,A;. 1)
ith by tsy9s uge Given a: X —> A, 341 We have

P Q9 f = 3] =
Ut ugdy (a) = wgquza = 0

so that u;’ ugfy = 0. Now let b € H(X,4;) and u3tb = 0. Then
3 =!: = = 1 1
b s ui“':l_si % bimlui)b ui+1 \Db) &

and the sequence H(X,A) is exact,
implications (i) = (ii) = (iii) => (1) the remainder

o

follows since {iii) is a self-dual statement.

Definition. If the conditions of Prop. 1, we say that the exact sequenc
itting meps for A. ™ SN

Corcllary. The sequence A splits if and only if each of the sesquences

0>a Y5 aWsav 30, 058 LypIyEr 0

o H ¥
At S p & pm Bt <& B & pe
bz szppropriate splitting maps. A diagram

o>a s W a0 50 &e dowen 6(0@6((
lfﬁ lf. lfn Clonvg, om & @ 6‘&%«,@@65%

0SB > B > B —>0 dorna .
v v
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is commutative if and only if
\/é) f' P vi‘f?sﬂ R t"f"uﬂ + vtgu"
for some gz A" -> B!, If this is t};e case then
g = ey,
Proof. Assume the diagram is commutative, Then
f = flu's' + g"ul) = vifis! + fsy"

= viftg! &+ (vit! + t"v")fs"u”

i

vifiagl + ‘t"f“u“s"u" & v‘.’ft?fslﬂuﬂe

LA un (ﬁesn % SA“U“) = pfigiyh
we £ind that f satisfies (&) with g = t'fs",

sume that (&) holds.- Then

(@]
8
bS]
(0]
+
m
(0]

fd
ed
Qy
N

il = vsfﬂsﬂu_ﬁ &+ t"fﬂuﬂu? 4 v?gﬁluu?
= viffsiut = L8

V“i — v"v?fgsf EX v“-t"f"u" =S v"v?gjj_”

1}

V" -tﬂfﬂuﬂ = f"uﬂ

since s'u' =1y, vt = 1 Thus the diagram is commutative. Moreover

B®°

Neor
st = sl(uls? + suM)s? = sisgh + 575"

and u"s" are identity maps. Thus s's" = 0., Similarly t't" = 0,

Hifgh’ : %€V2guusu = g
because t'v?! and u"s" are identities. This concludes the proof.
6, Subgadgets.
For each object A in a category A we have defined the ordered classes
M(A)} and E(A). These were the monomorphism classes u: B ~> A rdsp, the spimor-
phism clssses uz A => B, We shall now see that in the case of an gbelian cate-

B

gory A, the classes M(A) and E(A) essentially coincide,
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Proposition., Consider exact sequences
0> 42> 2T ar 50
0> 4> a5 o0,

Then the following conditions are equivalent:

1) u < Uy (in M(A))
2) v >v (in E(A))

e
]
O
H’v
N

1} = (3). u < u means that there exists w: A' —> At such
that u = ww, Then VLS VW = 0,

(3) = @D Consider the exact sequence

0> ur ) L nar,a) &> nlar,um).
For u £ H(A',A) we have qu = viuv‘: 0. Thus there exists an element w € H(A® @A_L‘)
uch that yw = ue Thus wyw =1 and u < Uy
The proof of {2) = (3) is dual.
In view of this proposition we find that the rela'tinon ‘f:‘t <> v establishes

g 1-1 order reversing correspondence between M(A) and E(A). If we reverss the

dentify this class with M(A). We ghall call M(A) ths

f~do

order in E(A) we can

o 9 £

cigss of subgbiects of A, Any subobject of A may thus be reprﬁsented by &

moncmorphism us B = A or an epimorphism ve A — C, When we pass to the dusi

< = 3 e

category, insgusiities are reversed.

Proposition, The class M(A) is a lattice,

Proof. Given m, up € M(A) represented by monomorphisms

JZBBl“'}A us By = A
consider the direct sum of B; and By represented by
?"‘JZBTL_%BQ v23 B2_>B
There exists then g unique map
uz B—=> A
such thst ue, = Uy W, = Uge Let




o
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11! M
B=>L. > A, u = au!

where u' is an epimorphism and u® is 2 monomorphism. Then ufuly, = w and
wu'lvy = up. Thus y < u", u, < uh,

Suppose that w < Wy up < w. Represent w as an epimorphism ws A > D,
Then by Prop. wus =0, 1 =1,2, This implies wavs = 0, 1 = 1,2 and thersfore
wa= 0. Thus wu'u! = 0. 8ince u' is an epimorphism it follows that wu" = 0,
Thus 2" < w, This proves that u = oV .

The existence of 1 N U, is dual,

-existence of the direct sum of B;, 1 e T,
Given
f: A—> B
in A we shall define maps
s M(A) = M(B), 7 M(B) = M(4)

as follows, Given g monomorphism us A! > A define f* (u) = Im fu. Given an
spimorphism v¢ A ~> A" defins £~ (v) = Coker vf.

Ths sorite comcerning £, £7, 1w Uy, u M u, is omitted.

-

Gﬂa&m vaci‘ésamwém e W\% \J\CK/&@.@\

(L




I Ao ait Sl - (al egeues 57(“6 e d@uas \/

1 Fod o1
Rien qou %nﬁxﬁgu Pk 688&""0“5‘)6“”1 xcm‘hu 4 porkd C Wre

SmA oldn q spibe 3 !
D\o&m H( lB (WSM f: A Aoy g {cemlle's C v ‘\e&({s e oQ‘e( )
celegonie el . H(4,B) eb’C tn §0rye OGPRen

Wale < Aewmerser %622
Calegouie cnale ‘ Mt B — H(B, A )
s A=
gt oy ok \écvx\ AR M Aoy Ges (c.\‘é&ou‘cs %e_“mc&a ") B

. s woe=s
A-E58 ‘r7:,l .

B €@, (e Wenonodisms
\

4 =) Roste Lemoromov@ises -

meL = Moy ==7 usC (q‘,@(’dv\’,u'p}

_Pr gd’ Y Ml\f-{eg C{—l‘c‘g"““‘ comlal- \C CQO'.,& (AN m% \"’WU"‘\C&A*S\“Q QA‘\ lw,\btg,e

5

o &

>

o0 = uzv

&

}(
L
k=8 —C —D —
Lol & e ol
Kea® — ¢ — b — E
_/' —— ——
T depsad elbe ‘Z\Q&nd’_eﬁce dareile i (M«Qe‘»%} ----- )

Sep W& XY d wagoboqe  huduits en Categre cddilig

:\I Senndl LA




IV, RESCLUTIONS

D
®
(@
F,I
W)
[6)]
u
[0}
w
C

f exas‘t sequences.

Let A bs an abelian category and let % be a class of exect sequences
(ranging from ~® to +am) in A, An object A £ A will be called E -projective
provided the ssquence H(A,E) is exact for every E € & . The class of g1l E-
projective objects will be denoted by &E- Lg:)

We now d=fine the class § of exact sequences as follows: E ¢ E‘-:' providsed
H(A,E) is exact for every Ae E~P. Clearly £c & and E-§ = E-P. There-

£ ¢ = E then we sgy that the class & is closed., Henceforth we
shall assume + £ is a closed class of exact sequences in A
Proposition 1. Consider exact sequences

(E.) 0>3, >4 >%.35 >0

(E) > Ay Ay A > .

be the ssguence dsfined by compositions

An{f. - Z.n > A'n"

Then the seguence E is in § if and only if each E, is

[N
3
6v§
°

Proof. Let A be E -projective. Each sequence
0 > H(&,7,) > H(A,A,) 2 H(A,Z, ;)
is sxsch, It is now clsar that the sequence H(A,E) is exact if and only if each
¢, is an epimorphism. Thus E € & if and only if E, £ & for each n.
Proposition 2. Let E and Eié_,,, :‘:"L_@& I)be exact sequences and let
vy B> Ey, tie T

be a family of maps which yield direct product representations for sach index n.
Then E ¢ & if and only if each Es ¢ L
Proof. Let A e & —!P@ Then we have the isomorphism

H(A,E) & [[ H(4,E;).
iel
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Q
[¢]
v

1(A,E) is exact if and only if each of the sequences H(A,E;)

Proposition 3, Let
0 =>E —>E-=>E" >0
bs an exact sequence of exact sequences, and assume that for each n the ssquence
t ] .
P> 85! > & = EF >0
is in & . If twe of the sequences E, E', E" are in B, then so is the third.

Proof. Let A bs E-projective. Then each of the sequences

0 > H(AE,') = H(AE) = H(A,ESM) - 0

1=
ur

exact. It follows that the sequence of complexes
0 > H(A,E') = H(A,E) = H(A,E") > 0
exact. Thus we obtain-an exact diagram
HEQ,E) > HEA,E))
g B

of homclogy groups. Thus if two of the homology groups are zero, sc is the third.

e
[

Proposition 4, Let 758 Ay > A, 1 bﬁrs?;. I be g direct sum representation of
A, Then A is E -projective if and only if each A; is £ -projective.
Proof. Let E be zny exsct sequence in &. Then the map
H(A,E) = TT H(4,,E)

s an isomorphism. Thus H(A,E) is exact if and only if each H(A; ,E} is exact.

- e AN o 5
Proposition 5, If O -> A' %> A L5 A" > 0 is an exact sequence in &

(0]
0
cl

snd A" is E -projective then the exact sequence splits (i.e., u' is a dir
summsnd and (or) v® is a direct factor).
Proof. Ths seguence

0 > H(A";A1) => H(A",A) - H(A",A") = O

1
[0}
[
™
Q
i,

-..3
®
B
(0]
e
o
iy

‘ore there exists a map u®: A" = A such that v = lgw. Thus

v® is a direct factor.
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» RBesclutions.

N

Consider a ssquence
(1) e > By i tlag. By
in A with
&dy =0, dsd5,9 =0 fori=1,2,0cs
The sequence (1) may also be written in the form of a commutative diagram

. g
IBPT e e i SE S el s
1 fi=1 1 s}

(23 el l le

sae";}O “‘}O ’%eee%o "';}A "‘}00
The top row yields a complex which will be denoted by X, the bottom row is a

complex which may be identified with A, The £€¢ X —> A is a map of complexss.

5

ghall say that-X-is a complex over A with £ as augmentation.
We shall say that X is Emacycli@ if (1) is an exact ssquence Ah Ce

We shall say that X is E-projective if each X; (i = 1,25000) is E=projective.

"
iy
e
~
ot
U(.q)
[}
ot
jar
0}
o}
)
o
a3
™M
L
o

s both ¥-acyclic and E -projective then we say that X

resciution of A (with € as augmentation).

S..i
Ui
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Proposition 1. GConsider a diagram
X X1
el let
& ? Al
whers X {resp.X') is a complex over A (resp. A') with augmentation £ (resp. £f).
If X is E -projective and X' is E-acyclic, then there exists a map Fz X = X!
such that ¢'F = f£. Any twe such maps F are homotopic.
A mep F as above will be cglled a map gver f.

Proof, Since X_ is E-projet¢tive and X' is g -acyeclic, it follows that
# pro]

H(X,,X,!) = H(X,A') = 0 ;
is exact. Thus thers exists an-element Fj € H(XO,XG%) which maps onto
fe € H{X, .A'), Thus e'F, = fe. Assume now that Fs: X; > X;' are defined for

i = Ogecezri‘—"l (":1 > j..,} ai’lﬁ. th&t
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d;'Fs ’= Fsqd; for i =1,,.0on-1
gir - = fF,
Since X, is E-projective and X! is E -acyclic we have the exact sequence
H(X,. X' ) = H(X, Xty ) > H(X,X,10)
(if n =1, replace X !> by A'). Consider the element Fo.10, € B(Z,,X, % ). Its

o

image in H(X,.X '5) is

ApliFpaadny = Fpopdpgd, = O ifn>1
SgFodl = fedl = 0 ifn=1,

Thus there exists Fss Xo <7 wi siFs = F. -ds i ] ce
Thus there exists Fy: X5 = X' with d3'Fs Fs_1d5. This proves the existen

e

Supposs now that F,G: X = X' are two maps over f: A > A?, We ghall de-
fine 2 homotopy St F o G, Clearly S;: X5 —> X517 is zero for 1 < 0. As sbove

ws have ths exact ssquence

7 /-

HZo,Xp ) > H(X X P ) —> B(X ,4%).
Consider the elsment G, = F, € H(X,X ). Its image in H(X,s4?) is

et (Gy = F,)

1

fe = fe = 0O,

Thus there is S, € H(X_,X;*) with ;'S = G

o = Foe Consequently

48+ 844, = Go - Fy

H(Xn,Xnil} - H(Xn,Xn?) > H(Xn,Xnﬁ,l)
and consider the element |
U = Gy =Fpn < 8pqdn € HEX').
We have
dniu = dnan = dn!Fn . dnzsnﬂdn

= Gndn = F‘ndn = (Gn . Fn = Sﬂmzd_ “1}5‘1’1 = 0.
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Thus there exists 8, e H(X,,X,!7) such that d,118, = u. It follows that (&)
holds for 1 = n, This completes the proof.
3. Resolutions of exact sequences.

Proposition 1. Consider the diagram
Xt xn
let |en
0 > At A== A"—>0
=17

whers the row is E -exact, X' is an € -acyclic complex over A', X" is an B-
projective complex over AY, There exists a complex X over A and maps such thai

the diagram ' ,

o>xtLyx &z 50
erl ci a"i
0= AL b 4 5 A" > 0
is commutative and sush that each row
Fa wF:l G
(&) 0> X A% BIX" >0

Procof. For each n, let X, be a direct sum of X,,' and X,". Thers resulis

F G
0-> X, 2> %, 5> %" —0

e =

F, G
5 n
X! €8-X <Bxn,

Let 22 XL > X 'y n=1,2,... be any sequence of maps. Setting
dy = Fp3dn'Fy + Gpu1dp"Gn + Fpoy Bl
we obtain maps dgs X, > X1 and by II.4, prop. 2 the diagrams
0= Xt e»fnéxn" =0

!
0% 1, >X SX¥ >0

Further let o ¢ X" <> A be any map, and define

£ = fe'F + oGt X => A,

(54
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Then =
&, = fe'F P+ oGF, = fe!
since FF, = ly 1, GF, = 0. Thus the diagram
"o et ;-) "o 7
Fo
XC‘j — Xo
el le
Al f—-—~>A
is commutgtive. Further
aGG = fa*FOGO + chOGO = g

becguss F,,CT0 =0and GG, = IX we GConversely if ez X, = A is such thai
o) "
eF = fe' then

€= a(Fof“C; + =CEQ,C-Q) = feﬁﬁo + a:EGGO = faffg + & Gy

Af uwe set 5 o= aGo.;

The commutativity in the diagram

X, —> X"
£ Fail
A —> AW

V]
)
jwr
e
=°
D
g}

conditions &dy = 0. d@l f‘Ld:n = 0 for n > 0, are then equivalent with ths
2177, )

g = £

(1) feizy + ¥ = 0
- § <+ " 1% = "

dnalzn anldn e

.- . - > o ° ° o £y
The probiem thus rsduces to finding o and -{Zn} satisfying equations (i). These

by step as follows. First condider the sequence

i o
frend
o
Y
Ef}
}..._J
)
[
[eX
(€]
—F
O]
o]

H(X,®,4) = H(XH,A") >0
which is exsct becauss X " is E-projective and 0 => A' > A > A" = 0 is in &
There is then o € H(Z®,4) such that go = g9, | ‘
From the sxgct seguences

0 > H(E",A) > HE",A) > HE",4") > 0
©6 e "’} H(Xlngxcg )9H(X1u5A3> ‘é‘ O

£
&
Qo
[\
(&8
fas
b
o
ct
LS
(G
O]
™
QO
o
ek
10))

equence
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H(X;",X,') = H(X",A) = H(X;",A") > 0.

Consider the slement u = -g 41" € H(X]_",A). Its image in H(Xy",A") is gu =

-go" 3" = «e"d;" = 0, Thus there exists 5 € H(X;",X.!') with fe!'% =u= ~od;".

Next consider the exact ssquence
H(X",%; ') = HEZ",X,') = H(X,A7).
In H{XQ" X:’3 consider the element u = =Fdo". Its image in H(X,,A?) is
ely = =¢g! 215_2"5 We have .
feln = -fe'Zd," = 4" = 0.
Since f is a monomorphism it follows that £'u = 0 and thus thers exists
%, & H(Xp" Xy ') with &' = u. Thus &' + % d," = 0 as desired.
Finally assume by induction that &; %, Z550005 2, 5 are defined for soms
n > 2 and that equations (i) hold. Consider the exact sequence
H(Z," Xpli ) = H(Xp" Xpl2) = H(X ", Xpls)
and in H(X,".X, o) take the elémen”‘t u = =5, 14" Its image in H(X,",X !9 is
dylon = =4 2% 54" =3 »d ".d " =0, Thus there exists % e H(X,",X,!;)
such that %33 =u. Then d, 7% + £ 374," = 0, and the proof is complete.
Corsllary. If X! and X" gre g -projective resolutions of A' and A"
then X iz an E-projsctive resclution of A.
Indesd, since each X; is a direct sum of X;! and Xi" it follows from
1. prop. 4 that X5 is E -projective., There remains to verify that the ssquence
soe Xy >3 P eee >, >A>0
is in 8% This follows from 1, Prope 3e
Definition. OConsider s commutative diagram
0=2>X"=>X-=2>X"=>0
0> ijk" - k = A" >0
with exact rows., If X (resp X', resp X") is an E -projective resolution of A

(resp A', resp A") then 0 > X' > X > X" > 0 is said to be an E&-projective

resolution of 0 = A' 2> A = A® = O,
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Proposition 2, Let
0>atisaBsam 50

{9t Jo-Jo
0 > B! —> B —3> B" - 0

bz a commutative diagram with exact rows. Let

ov~»>x5§;>x§»->x”->op o> v wso

bs Ee-prcjsctive resolutions of the exact sequences

v

atEx a8 am 30, 0B f—%ngB"%Oo
Then thers exist maps .

Bl xé‘;_e Y'Y, HBX>Y, X" o>
over @f, @, QP fespe,gtiveiy such that the diagram

o»;zm >X > >0

1k li"

G%Y?‘-}»Y% s

If ¢is XV 2> Y, Y2 X > Y, YW XU = Y® is snother tri ipie of maps with
the sams property then there exists a ‘tr:.ple of homotopiess

8tz @i ~ \3{89 8 @2_(1}[9 git e éir g“\if”

03X =X, =>If" =0
J'S,.:;' jlsn lsn"

i
S>Ih >y .Y >0
is zommutativ
Proof, Let :
° Ty Gy

XnG_Xn"
n_ 7

be diggrams with properties as listed gt the beginning of the proof of prop. ls

w2t proof we sssume that uhe maps dy2 X=X, 5 and €2 X = A ars given

o s XQ” -2 A, Z'hg Xﬁn > X-:i;:-

setisfying condition (i). We shall make similar constructions for the sxact
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0> 7Y =Y >7%" > 0 with g11 the homomorphisms carrying an asterisk,
We choose maps
gfs X' > Y8, @'sX" >

over @' and @” using Props 1. We shall show that #: X —=> Y can be constructed
sc as to satisfy the conditions of the proposition.
4 map §p¢ X, = ¥, such that the diagram

F G
0=>ZX! B> %, 2> X" —>0

U T S
0> Ty > Tn x> T —>0
11

Fn

must be of the form (II, 4, props 2)s

— v o . e *
& = F:f §'nFn + Gry 8n"Cn + Fpy [nGn

whers
Fpe X" —> T 1.
Thz commutativity conditions in the diagrams
X, Tos T X, Iny ¥
aJA . %a* anl, Lax
3 Xna1 > Tna

£Xe* Ty, = 9o = & Fo"

dp'Ty = Thaady" = 8512, - Zn*§n“®

uationg are sclved step by step as in the previocus proof. Boring pro-

H
[t
mw
i
I
X

The second part of the proposition can be proved by the sams method. How-

sver there exists a mors conceptusl proof which will be given here,

|71

Le%

$iz X! = X1, P X=>Y, M X"->7"
b2 another triple of maps over @', ¢, ¢". By prop. 1 we have homotopies

Str B ¥, S v

v _ =k o =% .
T-v! = Fn“:”lsrlan +* G’n%lsn"c‘lns Xn % Yn+1e
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then a unique map I}? : X => Y over @ such that Ts $ ~ ¢!, indeed
1«7 = g+ dT + Tde Since the diagrams

0 X' —>X%X —>X"->0
s ir ls®

n

are commutative, we have a triple of homotopies S!', T, S for the triples of

maps (§', &, &") and (¥*,V,4"), as required in proposition 2, Now we compars

<
1

(4?0 ¥") with the triple (¥!,¥,¥"). If we denote L = ¥ = {, this

the tr

()

fte

pls

{

comparing the triple (0,£1,0) with the triple (0,0,0); hers

gmounts ©

G

: X = Y is g map over the zers map A = B and the dlagram

6 >3 Loz 8iaw s b

o = da-lp

0 2> Y =>Y—>7" —> 0
F* G¥

is commitgtive, By the earlier part of the argument we have maps

T X,® > 7,

Ay = FXTyG,.

e®Ty, = 0
dn'ly = Tpady® = 0O
Thus s X® => Y! is s map over the zerc map A" —> B! and Q) = F'IG, By

prop. L we have a homotopy Us ' 0. Setting Ws FX UG we obtain a homotopy

-F G
0 —>Xpt 25> Xn 233" — 0

b lm o

0—> Tl = Ty —> L1 —> 0

FR n+l mlGn-%l

are commutgtive, the proof is complete.
Le Existence of resolutions.
Proposition 1. For every closed family £ of exact sequences in A the

following properties are equivalent:

/)
o




(1) Every & € A has an E-projective resolution X.
{2) For every A £ A there exists an exact sequence
N e T
in B with Xo &‘prcjective@
Proof. (1)=> (2). Let X be an &-projective resolution of A. Then
vea> X —> Ay —> A —> 0
is in € and X, is £ -projective., (2) now follows from iV, 1, props la.
{2} => (1). Using {2) construct a sequence
0 > 2y —> Ty —> Ag=> 0
0> —> T —> B> 0

@ e o
0 ==> Zy —> X, --> 2,4> 0
of sequences in § with Xy E-projective for n = 0,1y0.. It follows from
IV, 1, prop. 1 that the exact sequence

b2

L, —> Xpg —> eee > X —> 4 =—>0

i
1))

in . Since eazh X:‘L is Ewproject:t".ve‘this yields an E-projective resolution
of A, »

Definition. A family & of exact sequences is called complete if it is
closed and satisfies the conditions of Props 1l

Thers is @ completely dusl set of notions obtained by passing to the dual

Py

category A¥, Let € bs a family of exact sequences in A and let EF denote
the porressondine Panily in AF A 3 < £ -sniects
the corresponding family in o An element A € is said to be & =injective
P AE <A* et E* s e S - g e ) - . +
it A& is g -projective. Similarly for injective resolutions, etc. Thus
Ac A is E==injec*tive if and only if Hom(B,A) is exact for every exact sequence
B in &

5. Examples.

. Let A be an abelian category and let & be the family of all exact

g

sequences in A that split. If A ¢ £ then it follows from I1,5, Prop. 1 that
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H(X,A) is exact for every X £ A, Thus every element of (A is £-projective. If
A is any exact sequence and if H(XA,A) is exact for every X £ (A then again from
II.,5, Prop. 1 we deduce that A splitss” :Thﬁ'sr‘ the class £ is closed., Since each
Ac A is gmpfojective, it follows that £ is complete. For every A € A an
ﬁwprojective resolution of A can be obtained by taking K»é itself.,

2. The most typical case usuailyvcor.lsidered is when £ is the class of
all exact sequences in As _This class obv;musly is closed. The E-projective
eiements are frequently c:alle.d projective (with & omitted). In general, the
class g is not complete. In Grothendieck's paper two general theorems were
given stating sufficient conditions for the completeness of €. In all major
applications, fairly simple ad hoc proofs pf-completeness have been foundé. There=
fors this write-up omits the genersl theofems; which would require considerabls
labor and terminologye.

&;ﬁ: Let A be a ring and let Am be the abelian category of left A-
moduies, We taks to be the class of all exact sequences. In this cass ths
rojective modules are exactly the direct summands of free modules. Since each
module is iscmorphic to the guotieni module of a free module it follows that &
is complets.

Now consider the class gF of Am*" ,I“n"‘order to show that this class is
complate we mist find for each module A_,’afﬁaﬁéoﬁorphism A = & where i is injec=
tive, First consider the casse A= Z(the ring of integers). In this case a
module B is injective if and omly if nB fOI" every integer n > 0. Write the
module A in the form A = F/B, F free. Thfear;"; deflne A =FQE g)/B, whers Q is
the group of gll rational numbers. VTﬁe'i'i: gg"injective and the natural mepping

A > & is a monomorphism. Now let A be any ring and A a left A-module. There

U

xists then g Z-monomorphism @: A —> A where A is Z-injective. This induces a

A =monomorphism

Homg (A ,4) = Hom, (AA,4).
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This combined with the monomorphism
4 = Hom,(A,A) = Homy (A ,4)
yields a monomorphism ,
A — Hom, (A,L).
There remains to be proved that the last module is A -injective. Let then B
be any exact sequence in Am' We have
Hom, (B, Homg(A,X))# Homy(8® A, L)

# Hom, (B,4).
This last ssquence is exact bscause 1 is Z=-injective. Thus HomZ(A,z) is
- fl=injective.

4. Another interesting example can be extracted from a’ rélajfive homology

theory recently proposed by Hochschild. Let

e A — L
be a ring homomorphism. Let & be the class of all exact sequences in [.m
which split when regarded as exact sequences in Am

We shsll show that both & and EF are closed and complete.

First we show that for any A CAWZ the I-module (CP)A = I‘@AA is €=
projective. Indeed we have for any exact éiaﬁanqe B
) Homr( (:CP)AQB) :‘;Homl-\(I‘QA A,B)

s‘dHomA(&; HomF(I‘,B))x HomA(A,B)e
This last sequence is exsct if B A-splits. -

Now we can show that E is closed. Indeed suppose B is an exact sequence
in pfit such that Homn(A,B) is exact for every A which is E-projective. In par-
ticular for every A £ W, the sequence ;,:_Honi-\( (@)A’B) is exact. Thus by (&)
Hom,(4,B) is exact for every A £ pffl. This proves (II,5, Prop.l) that B
A-splits and thus B £ &.

To show that & is complete take A Cfm and consgider the maps

a
s
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given by
iz =1®a Bly ®y 8) = va.
Clearly Bo = identity, o is a I'-monomorphism and B is a A-homomorphism. There
results an exaét sequence
0 >85> (A —>C—>0
which A-splits. Since (@)A is E-projective, it follows that & is complete.
The treatment of €* is similar. For each A £,M7we consider the I-module
{@EA = HogAﬁP§A) and prove that it is E-injective. Indeed
Homp(B, (P)4) = Homp (8, Hom, (I',A))
zHomA(I‘ ®r B,4) = HomA(B,A).
Thus if B is an exact sequence in B then B A-splits and HOQA(B,A) is exact
(1I.5, Prop.l). Thus Homr(B,(‘P)A) Liiemiots mud s PR 80 Boiviebth)

Ths balance of the argument is similar.




