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§ 1. INTRODUCTION

1.1 Motivation

St1ff differential equations are equations which are 111-
conditioned in a computational sense. To reveal the nature of
the ill-conditioning and to motivate the need to study numerical
methods for stiff differential equations. let us consider an
elementary error analysis for the initial value problem

1.1) y = -Ay, 0<t<t,
y(0) =yo
Here y is an m-vector and A is a constant m Xm matrix. The dot

denotes time differentiation. Corresponding to the increment
h >0, we introduce the mesh points t, =nh, n=0,4,... . If

Yo =y (t,),

the solution to (1.1) obeys the recurrence relation,

“4h
1.2) yn+1 = e yn‘
For convenience we introduce the function S(z) = e'i and we
rewrite (1.2) as
1.3) Yoo = S(AR)y .

The simplest numerical procedure for determining an ap-
proximation u, to y,, n = 1, 2, ..., 1s furnished by Euler’s
method,

1.4) Uppg - U, = -hdu_, n=1.2.....
Uo “Yo-

Using the function K(z) =1.- z we may rewrite (1.4) as
1.5) u g “K(AR)u, .

By subtracting (1.3) and (1,5), we find that the global

error,



€n Up " Yn
obeys the recurrence relation

1.6) e

nt+1 n

Here T is the truncation operator T =K -S. (1.6) may be solved
to yield

n .
- J
en+1—j§0 K Tyn_'j»
from which we obtain the bound
< j
1.7) |e, I < nos?gﬁ_iHKll os72§-1||Tyj|l'

Note that nh<t.
If the numerical method is stable, 1i.e.,

1.8) Lkl <1
and accurate of order p. i.e.,
1.9) [Tyl =0mP*),

then the bound (1.7) shows that |len|| =O(hp). (Of course for
Euler’s method p =1. to which case we restrict ourselves.)

To demonstrate (1.9) we note that "yll is bounded for
0<t<7% and we show that ||T|| #O(h®). For the latter we use
the spectral representation theorem which tells us that

m
1.10) T(hd) = '21 T(hxj)Pj(A).
iv
Here we have assumed that the eigenvalues Kf, j=1....,m of 4
are distinct.The P.(z), j=1....,m ~are the fundamental polyno-

mials on the spectrum of A. (i.e. P.(z) is the polynomial of
minimal degree such that Pj(Ai) = 5ij= t,j = 1,...,m.) We have
chosen T(z) = K(z) - S(z) to be small at a single point, 'z = 0.
Indeed

T(z)=0(22).

This and (1. 10) assures us that ||Tl‘=0(h2). More precisely
we have that



1.11 T =0¢in, ., [7h%)
whzre
| na | = max Ix.].
* 1€j€m

One proceeds similarly, using.the spectral representation
theorem to deal with the requirment of stability.For Euler’s
method we obtain stability if

1.12) 11—h>\j|\<1, j=1,....m.

For the usual eguations one encounters 1in numerical ana-
lysis, |>\max is not too large and (1.12) is achieved with a
reasonable restriction onthe size of h. Inturn (1.11) combined
with the bound (1.7) for Heanives us an acceptable -error
size for a reasonable restriction on the size of h.

1.2. Stiffness

A stiff system of equations is one for which |>\max| is
enormous, so that either the stability or the error bound or
both can only be assured by -unreasonakble restrictions on h.
(i.e,, an excessively small h requiring too may steps to solve
our problem.) Enormous means enormous relative to a scale which
here is t. Thus an egquation with |>\maxl small may also be stiff
if we must solve it for great values of time.

In the literature one usually finds stiffness in a system
of differential equations to be defined as the case where the
ratio of the eigenvalues of largest and smallest magnitude,
respectively is large. This definition 1is unduly restrictive.
Indeed as we may see, a single equation can be stiff. Moreover
this usual definition excludes the obviously stiff system
corresponding to a high frequency harmonic oscillator, viz

1.13) yrw'y =0, w® large.

Indeed neither definition is entirely useful 1in the no-
nautonomous or nonlinear case. While stiffness is an informal
notion we can include most of the problems which are of interest
by using the idea of 11l conditioning. Suppose we develope the
numerical approximation to the solution of a differential equation
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along thepoints of amesh. for example .by means of a relationship
of the type (1.5). Then if small changes in u, in (1.5) result
in large changes in u,_,,.then the numerical method represented
by (1.5) 1s 11l conditioned. To exclude the difficulty where-
in this unstable behavior is caused by the numerical method and
is not an intrinsic difficulty to- the differential equations.
we will say that a system of differential equations 1s stiff
if this unstable behavior occurs in the solutions of the diffe

rential equations.More formally we have the followingdefinition.

Def. 1.1 - A sysrem of differential equations 1s said to be
st1ff on the interval [0.7)]. 1f there exists a solution of that
system a component of which has a variation on that interval
which is large compared to 1/%.

The following example shows how treacherous the reliance
on eigenvalues to characterize stiffness can be: even in the
linear case:

1.14) y =A(t)y.
where
sin wt cos wt
1.15) A(t) =< >
cos wt -sinwt

The eigenvalues of A(t) are +1. The matrizant of (1.14) is

nh
1.16) o(t) = B(t) —22Z 4+ T cosho.
o

Here I is the 2 X2 jidentity matrix,

1/2
1.17) o =¥ (1-cos wt) /
and
1 1- cos wt sin wt
1.18) B(t) = —( . >
“ \sin wt cos wt-1
Thus

1.19) 8(t) = (coshNi-2cos wt) (1+0(w"*))I

uniformly for te [0,%].
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Thus s spite of the eigenvalues of A{t), the solution of
{1.14) varies with frequency w, a guantity at our disposal.

Theselectures will deal with the computational theory of stiff
equations.

1.3 Warning

The various methods which are presented and discussed here
have been selected because of the ideas and properties of a ma-
thematical nature which the expose.No inference concerning the
efficacity of a method should be drawn solely from its inclusion
here and inversely.

1.4 References

References will be given at the end of each section. Although
there is alarge bibliography for our subject,we will not display
one.Rather we refer tothe references at the endof this chapter.
These references are of a general nature and contain large
bibliographies.

REFERENCES

[1.1) Bjurel, G., Dahlquist, G., Lindberg, B., Linde, S., and
Oden,L.,"Survey of Stiff Ordinary Differential Equations"”,
Report NA 70.1l, Department of Information Processing

Computer Science, the Royal Institute of Technology,
Stockholm, Sweden.

[1.2] Liniger,W.,"Lecture Noteson StiffDifferential Equations"
A course given at the University of Lausanne, (1973-74).

[1.3) "Stiff Differential Equations" Proceedings of the IBM
Research Symposia Series,Edited byR.A. Willoughby, Plenum -
Press (1974). :

§ 2. REVIEW OF THE CLASSICAL LINEAR MULTISTEP THEORY

2.1 The Initial Value Problem

We begin by considering the nonlinear initial value problem
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x=f(t,x),
2.1)
x{a) = s.

where x, f and s € €, (i.e. are nm-tuples of complex numbers).
We seek a solution to (2.1) on the 1interval I;

I={tla<t<p; - @<qg<p<m},

Def. 2.1: f 1s said to be an L-function if for all te I and
x and y €C_ ., there exists a constant L such that

Lfce )~ fey)l € Llle-yl].

Here HxH denoctes any normof x:(xi;..._.a?n}.For example Hx” =
m .

.S et
1=1

We may now state the following existence and uniqueness
theorem for the problem. (2.1).

Theorem 2.1: 1f fis continuousint for ¢ €I and if f 'is an L-
function, the problem (2.1) has one and only one solution in I.

2.2 Linear Multistep Operators

The best known numerical methods used to generate approximate
solutions are based on the linear multistep operator & given

by

k k

; - d
b=5 4B -h T B.E —.
cy=0 7 =07

dt
Here E is the shift operator
Ex(t) = x{t+h)

and the o and Bj are given scalars with (a5 +;3§) v a, #0. k is
called the number. of steps of & .

Def. 2.2: & is said to have degree of precision p, if & anni-
hilates all monomials t%?, ngpandp is maximal with respect te
this property.

' Now let us suppose that x(t) e C”andlet us express & x(t)
in the form of a Taylor series.
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0

2.2) c‘éx(t)=_zocvh”x(V)(-t).

An alternate definition of the degree of precision of & is
given in the following definition.

Def. 2.3: & is said to have degree of precision p if the co-
efficients a. and BJ. may be chosen so that ¢, =0, v=0,1....,p
and p is maximal with respect to this property. Clearly p < 2k.

2.3 Approximate Solutions

To construct an approximate solution to (2.1), we begin by

. . - > =
introducing the mesh ¢t = a+*nh, h20, ned, {0,1,...,nmax

el, 1t=0,1,...,k.
An approximate solution 1s a sequence {xn}, ned, where

x 1s considered as an approximation to x(t_ ).ne€J,. We define
n n h

Jy, is the set of integers such that t .

an approximate solution by means of & through the linear multistep
method,

k ®
2.3) F(x,) =j§0 Oijn+j - h jg%) ijnw“j = 0. nedy.
Here f, “f(t,.x,).
The linear multistep method is saidto be explicit if R,=0.
Otherwise it 1is 1implicit. Each X,.p» N€J, 1is obtained from

(2.3) through transposing and solving an equation of the form
W%, hBLf(t e %pep) =constant.

In the explicit case solving thisequation requiresonly division
by a&,.

The linear multistep formula allows the step by step de-
termination of x ,n € J;,,provided that the values of Xgsoe X g

are known. These so called starting values are determined by
some independent procedure which may be called the starting
procedure. As a notation for the starting procedure we will
write

2.4) x, =S (h), m=0,1,... ,k-1.

The following two definitions are basic.
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Def. 2.4: The starting procedure is said to be bounded 1f there
exists aconstan M>0. such that ||Sm(h)||$M for all sufficiently
small h.

Def. 2.5: The starting procedure is said to be compatible 1f

ﬁig S, (h)=s. m=0.4,.... k-1,

Let (C.f.(2.1))
2.5) ho:ak (Bkl)”l'

The existence and uniqueness of the numerical procedure
is the subject of the following theorem.

Theorem 2.2: A linear multistep formula has one and only one
solution X, nE.]h for all starting procedures Sm(h) 1f 0<h<hg.

2.4 Examples of Linear Multistep Methods

The following are some of the well known linear multistep
methods:

1) Adams’® method

x

k
ntk " Tnek- -h ]% B]fn-i-J =0

B, #0: Adams-Moulton, k=1: Trapezoidal formula
B, = 0: Adams-Bashforth, k=1: Euler’s formula

ii) Nystrom’s method

k-1
Xtk " Fnep-2 " h jz=:0 ijn+j

k=2: mid-point formula

1i11) Method of Newton-Cotes

M=

Ynek " *n -h =0 ijn-%j =0

kE=2: Simpson’'s formula



-~ 15 -

iv) Backward differentiation formula

2.5 Stability, Constistency and Convergence

A linear multistep formula is consistent ifits order p > 1.
This is explicitly characterized ‘in the following definition.

Def. 2.5: A linear multistep method is said to be consistent if
(e ))ll =0(h), neJy,

where x(t) 1s any solution of x'v=f(t,x). (C.f.(2.3).)
We now introduce the p and o polynomials.

#

2.5) p(w)

i

k .
2 a.,
i=0 7
- J
o (w) > ij
j=0

and we suppose that (plo) =1. We now easily conclude the follow-
ing theorem:

Theorem 2.3: A linear multistep method is consistent 1f and
only if

L(1)=p(1)=0
and

&(t)=h(p'(1)-0(1)) =0

The stability of a linear multistep methodis characterized
in the following definition.

Def. 2.6: Let M be - a constant. A linear multistep formula is
said to be stable if

ne L1, |1 <

uniformly in h, h€ (0,ho] for all bounded starting procedures
and for all f € L.
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The study of stability makes use of the root condition
given in the following definition.

Def. 2.7: A polynomial p(w) 1s said to satisfy the root con-
dition 1f all of its roots lie in the closed unit disc while
those on the boundary of the disc are simple.

With this we have the following theorem.

Theorem 2.4: A linear multistep method 1s stable if and only
1f o(w) obeys the root condition.

The global or cumulative error of the linear multistep
method 1is

2.6) e, sx, - x(t,), ned,.

A convergent method is characterized in the followingdefinition.

Def. 2.8: A linear multistep method is convergent if for all
f € L and all compatible starting procedures, we have

i n Heall =0

Finally, the main theorem of this subject is the following.

Theorem 2.5: A linear multistep method is convergent if and only
if it is stable and consistent.

REFERENCES

[2.1) Henrici,P., "Discrete Variable Methods in Ordinary Diffe-
rential Equations™, Wiley, New York (1962).

§ 3. THE METHOD OF ABSOLUTE STABILITY

3.1 Stiff Systems

Consider the linear case
3.1 x = Ax, te (0,?};

where 4 is an mxm constant matrix. Let Kj, j=1,....,n be the
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eigenvalue of A. The following definition characterizes a stiff
system.

Def. 3.1: The linear system (3.1) is said to be stiff if

max |K.;l>>1.
1€j€n i

As we may see this 1s not a precisely defined notion.

Remark 3.1: A system consisting of a single equation may be
stiff. ‘

To motivate the first method for dealing with stiff systems,
consider the case m = 2 with A, << A, <0 and with the solution

F(t) = exit +6th.

As t increases fromzero there is atransitory stage during
which F(t) varies extremely rapidly. After a time of the order

A-* the component e”

of F(t) becomes negligible and a new
permanent stage developes.To determine anumerical approximation
to F(t) in the transitory stage we would use a mesh increment,
h,, such that lhlkml is small. For the permanent stage we would

iike to use a much larger mesh increment h, and one such that
[Niho| << 1 <<|A Ry

In this gase the numerical theory is applicable for the com-
ponent e~**. We donot expect the same to be true for the other
component.!fowever, if the method 1s stable no matter how large
|Amh2| is, we may expect the component e”'®’ to remain negligible.
This technique calls for methods of an extraordinary stable
character, indeed i1t calls for methods with a form of absolute
stability.

We give three criticisms of the idea.

i) Getting through the transitory stage requires a number
of steps proportional to A;l and this may not be acceptable,

ii) If A, is large in magnitude because it has a large
imaginary part, the transitory stage 15 permanent.

111) Absolutely stable methods of simple types are rare;
(This will be seen presently.)

For the time being we exclude eigenvalues with a large im-
aginary part and we will return to this typeof problemin §312.14.
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3.3 A-stability

Now we formalize the celebrated notion of-absolute stabil-
ity called A-stability. :

Def. 3.2: A linear multistep method is A-stable if all solu-
tions of the difference equation generated by the application
of this method to the test equation (scalar)

3.2) % =Ax, A a complex constant,

tend to zero as n—® for all A with Re A <0 and for all Ah>0
fixed.

To determine which linear multistep methods are A-stable,
we note that when the test equation (3.2) is inserted into the
linear multistep formula,a linear difference equation.results:

k

3.3) ];0 ((x]'QB])yn_] =4, q=)\h

The characteristic equation corresponding to (3.3) is

3.4) X(w;q) = p(w) - go(w) = 0.
(<F (2.5)) .

X defines a k-valued mapping of q into w. The inverse of:
this mapping,

3.5) g(w) = p(w)/o(w),

defines a single valued mapping of @ into g.

With these observations we may state the following propeo-
sition:
Proposition 3.1: Let w;,, i=1,...,k be the roots of Xﬁw{g)zo,
Then the following three statements are equivalent

a) a linear multistep method is A-stable
3.6) b) Re g <0 =>|w | <1,  i=1,...k
¢) lwl">1 =>Re q(w) > 0.

Using this.proposition we may state and prove the follow-

ing lemma. \
Lemma 3.1: The linear multistep method Z%} {qi-qﬁj)xn+j =0 1is
j=
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A-stable if and only if
i) The roots o, of o(w) satisfy (o, | €4, 1=1,... &

and
ii) Re p(w)/o(w) 20, for all  in W={w/|wl > 1},

Proof: A) We first show that A-stability implies (i) and (i1).

That A-stability implies (ii) is obvious. We proceed to
verify (1) Since (pjcr)=1, p(c;)#0. Thus under the mapping of
w=q generated by X(w;q)=0, each o; is mapped into the north
pole of the g-Riemann sphere, the latter being a point on the
“imaginary axis of that sphere. Similarly each neighborhood of
7. is mapped onto a neighborhood of the north pole. Now -every
neighborhood of the north pole contains values of ¢ such that
Re ¢ <0, .

Suppose (ii) were not true. Then one of the roots o, is
such that iCTvil‘>1» Then thereexists a sufficiently small neigh-
borhood of this'OE contained in ¥, (¢ f. Figure 3.1).

¢ /“TN

dh
NIE

" Figure 3.1

Thus X=0 would have solutions in W for values of ¢ with
Re g <0. This contradicts the A-stability, completing part. (A)
of this proof, '

B) (i1) implies (3.6¢c) in W. Thus there remains only to
verify (3.6c) for lw|=1. Then let @, be such that |w|=1 and
consider two cases; case (a) O(wp)#0 and case (b) o(wy)=0.

Case a: O (wy)#0

In this case g(w) is analytic in a neighborhood of wy. Sup-
pose to the contrary that BRe gq{wg) <0.Then asufficiently small
neighborhood of wy will be mapped onto a neighborhood of g(wg),
the latter neighborhood being entirely contained in Re g <0.
(¢ {. Figure 3.2).
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Figure 3.2

This neighborhood of ws contains points wof Wwhose image,
g(w) satisfies Re ¢ <0. This contradicts (ii) completing the
proof of case (a}. :

Case b: o(wy)=0

In this case ¢(wo) is the north pole of the ¢-Riemann
sphere, a point on the imaginary axis. Thus (3.6c) is obvious-
ly satisfied. This completes the proof of case b and the lemma.

The following proposition 1is interesting because 1t in-
creases the similarity of conditions on o(wo) for A-stability
to the root condition for po(w) for ordinary stability of the
linear multistep method.

Proposition 3.2: If a root wy of o(w) has magnitude unity and
is not a simple root, then the linear multistep method is not
A-stable.

Figure 3.3
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Proof Let m#2 be the multiplicity of the root wg. Then g(w)=
=const(w-wg ) (1+0(1)). Thus the sectors of a neighborhood of
wo which are of angle 27/m (at most -a half plane) are mapped
onto a neighborhood of the north pole of the g-sphere.Since the
sectors are at most a half plane, we may choose one which lies

entirely in W (except of course for the vertex wg of this sec
tor). (¢ f. Figure 3.3).

Thus there exists points of W whose images satisfy Re g <0.
Thus the corresponding linear multistep method is not A-stable.

3.3 Examples of A-stable Methods

We now give several examples of A-stable methods.

1. The trapezoidal formula:

1
*ntt " *n ‘?h(fn+f+fﬁ) =0.

Thus Re ¢(w) >0 in W and the rodt of o on |’w§=1 is simple.

2. The backward Euler formula:

Xn+d ~%n ~ hfn+1 = 0.

plw) =w-1, o(w) =w.

2
Fend c —R y
Re q(w) =l‘f’_1____e_f.)_> 0, lw] > 1.

2

W

1
3. %nik " Fa "_Q'hk(fmk"fn):o-

p(w)gwk -1, o (w) =~—12-k(wk+1),

The roots of o(w) are the k-th roots of unity.
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1wl g
Re q(w) = —k —2—T"=

2 }aﬁ + 1]

> 0. > 1,

[

Note further that p(1)+0, p'(1)=0(1)=k implying the consistency
of this method. This example shows the occurrence of linear
multistep methods which are consistent and 4 -stable for any &
(i.e. any number of steps).

3.4 Properties of A-stable Methods

Achieving A-stability is costly in terms of the restric-
tions this property imposes on the class of linear multistep
methods. The first restriction is the loss of explicit schemes
which requires a greatér amount of computation in each step of
the method. This restriction is characterized by the following
theorem.

Theorem 3.1: An explicit linear multistep method can not be A-
stable.

Proof: Assume to the contrary that the method is both explicit
and A-stable. Then B,<0 and g(w)=p(w)/o(w) has a pole at the
point, @g, at infinity on the w-sphere.Blt wo as well as neigh-
borhood of wy lie in W. The image of such a neighborhood under
the mapping 9=¢{w) is a neighborhood of the point, go, at in-
finity on the g-sphere.Such a neighborhood contains points for
which Re g <0. This contradicts (3.6¢c) completing the proof of
the theorem.

If a linear multistep method is of order p, we have from
{2.3) that

1 (p+l .
pig BT () (1s00n)).

3.7) b(x(t))=c

If p 21, p(1)=0 and since (0lo)=1 then o(1)#0.Now consider the
following definition which introduces theso-called error cons-
tant ¢*, which serves as a measure of quality of linear mul-
tistep methods of the same order.

Def, 3.2: c*zwcp+z/0(i) is called the error constant of a

linear multistep method of order p % 1.

Bemark 3.2:

3.8) c* =li? [logLvmp(w)/anw)]/(wml)p+1,
e
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The following theorem characterizes the key restriction on
A.stable methods.

Theorem 3.2 The order p of an A stable linear multistep method
can not exceed 2. The trapezoidal formula is the A-stable method
of order 2 which gives the smallest error constant, c*=1/12,

Proof: The.proof begins with a side calculation.

w+1 . .
Let =z *-——3—, the well known 1-1 Moebious transformation
w- .

carrying @=1 into the point z at infinity. Let the transforma-
tion [ be defined by

@) -2 2 (w1)* f(—i-i—)

and let
r(z) =I'p(w), s(z) =lo(w).

Now apply I' to (3.8). We get

i1 p+i
log 2+l _r(z) | C*(él) (1+0(1)), 7o,
P’

z-1 s(z)
. Z+1 -1 2 ~3 : - 4 .
Since log = 2z +j§ z ° +0(z %), this becomes
z-
3.9) r(z) _ g,mt +(31~ 80’>z-3 +0(z™ %),
s(z) 3 -
where
c* , p=2
¢’ =
0 , pz3

Thus we may note that thecoefficient of 278

ly positive if p 2 3.

Next we translate the conditions (i) and (i1} of Lemma
3.1. By using properties of the Moebious transformation,we see
that this lemma asserts the equivalence of A-stability of a
linear multistep method and

in (3.9)1is strict-
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i) The roots s; of s(z) satisfy Re s, <0, i=1,...,k
3.10)

ii) Re 222 5 0 for all z in Re 230,
s(z)

Next we make use of the following variant of the Riesz-
Herglotz theorem (c.f.[3.1]),p.152):

Theorem: An analytic function ¢(z) which satisfies
- - <0
a) Ogggml%qb(x)l
b) ¢(z) regular in Re z >0
c} Re ¢(z) 20 in Re z >0
may be represented as follows:

® dw
$(2) f =L

®

where w(t) is a bounded nondecreasing function.
r(z)
s(z)
x€[0,%)-. We note first that (3.9) implies that =xr(x)/s(x) is
bounded as x = ®. By hypothesis the linear multistep method is
A-stable. Then from proposition 3.2, o(w) has a zero of order
at most unity at w=-1. The same then 1is true for s(z) at z=0.
Then xr(x)/s(x) is bounded at x=0.Using (3.10) (i) we may con-
clude that xr(x)/s(x) is bounded for all xon the positive real
axis. Thus z¢(z) is indeed bounded as claimed.

Now (3.10) (i) and (ii) imply that¢(z) is regular and that
Re ‘¢(2z) 20 in the half plane Re z>0.

Thus the hypotheses a), b) and c) of the cited theorem are
verified and for x> 0, we have

) © . } ] @ 2 ' ;
* s(x) _.fim x-1it deo(t) ]:m x241? deo(t).

2 2
x 2x t

Now we will show that z@(z) =z is bounded for all

Since — - 2 0 for x>0, we may conclude from
. X x2+t2 (x2+t4)2

this representation that
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3.11) ;d»[x ’"i";]z 0,
X S{x

Next from (3.9) we may conclude that

3.12) %[x%]:“?(%- 8c‘>x“3(1+0(1)), x =0,

Comparing (3.11) and (3.12) we deduce that
3.13) =- &' <0.

If p23, ¢' =0 and (3.13) is impossible.This demonstrates
the first assertion of the theorem.

If p=2, —i;" 8c' €0 or ¢*21/12. For the trapezoidal formula,

,o(w‘) =w-1, o(w) =—;—(w+1), r(z) =‘\/—2_,. s(z) =z/‘\/_2- so that

r(z) 2

s(z) 2
- o . SR .1
Comparing this with (3.9), we deduce that 5 8c¢*=0 or ¢ T

This demonstrates the second assertion of the theorem and com-
pletes its proof. ‘

3.5 A Sufficient Condition for A-stability

Condition (ii) of Lemma 3.1 requires the verification of
a property of g(w) for all w in W. Aless stringent requirement
furnishes the following sufficient condition for A-stabilisy.

Theorem 3.3: 1f

1) the roots o, of o(w) satisfy }‘cri}'<1, i=1,...,k

and :
ii1) uf{w)=Re g(w) 20 on the unit circle,

then the linear multistep method is A-stable.

Proof i) implies that g(w) is analytic.in W and 1n particular

4
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at w =9, Then u(w) is harmonic in W and from the minimum prin-
ciple

u(w) 2 min u(w)
w| =1

for all weW. Then (ii) implies that u(w) >0 for all welW. Then
(3.6) (c) implies that the method is A -stable, completing the
proof of the theorem.

3.6 Applications

As an application of theorem 3.3 consider the formula

n-

3.14) % .4 -x, - hl(1-a)x ,,+ai ] =0,

for which p 21 for all real values of the parameter «a.

For a =1, 1/2, 0 respectively, this formula becomes the Euler
formula, the trapezoidal formula and the backward Euler formula,
respectively. In any case we have

o(w) = (1-a)w +a.

1

The root o,=-a(1-a) * of o(w) is less than unity in magnitude

if and only if a <-%-. A calculation shows that

w(e'®) =lo(et®) 7P’
where

P(e'?) = (1-2a)(1-cos 6).

P(eﬁe) 20 if and only if a S-%-- Thus (3.14). is A-stable if
a <-£
5

Note that the trapezoidal formula (which is A-stable) fails
to satisfy the sufficient condition of theorem 3.3.
A second application is the following formula

(~1-a+b)x +2(a-b)x, , +(1-ab)x, o hlak +(2-a-b)i, +bi . ,]=0.

For this formula p 22 for all real values of the parameters «
and b. One may show that for this formula, hypotheses i) and
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of Heorem 3.3
ii ) Aare equivalent to the following two inequalities:

b-a>0
1+a+b>0.
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§ 4. NOTIONS OF DIMINISHED ABSOLUTE STABILITY

The family of linear multistep methods is so desirable be-
cause of its simple form for computation and analysis that the
limitations imposed on this family by A-stability made a great
impact. In order to attempt tosave the family for the solution
of stiff differential equations a sequence of weakened forms
of absolute stability were invented in order.

We will look at one of these, A(d)-stability and seée by
just how much it improves things. We start with the following
definition.

4.1 A(a)-stability

Def. 4.1: A linear multistep method 1s A(a) stable, 0<a <l% ,

if all solutions of the difference equationarising through the
application of this method to the test equation, tend to zero
as n—® for each fixed mesh 'increment h> 0 and for all A #0
where

g=rheS,={qllarg(-q)| <u, g0}

We may note the following remarks:

Remark 4.1. Let w,, i=1,... k be the roots of the characteristic
equation, X=0 corresponding to the difference equation arising
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from the application of the test equation (c.f, Def.3.2) to the
linear multistep method. Then the corresponding linear multi -
step method is A(¢) stable if g €S, implies that the |w,| <1,
i=1,.. k.

Remark 4.2 a) A(0d)-stability =>A(B) stability for 0<B<a.
b) A stability is equivalent to A<§J~stability
The case ®¢=0 is described in the following definition.

Def. 4.2: A linear multistep method is A(0)-stable if it 1is
A{o)-stable for all sufficiently small a>0. ,
The following lemma is the analogue of lemma 3.1.
: k
Lemma 4.1: The linear multistep method 2;% (ajwqﬁj)x
A(a)-stable, ¢>0, if and only if .

i) The roots s, of s(z) satisfy Re s, <0, 1=1,...,k

n+j 18

1i) r(z)/s(z) is in the compliment of S, for all z 'with
Re z>0. {(c.f. Theorem 3.2).

For the case of A(0)-stability we have the following nec-
essary condition.

Lemma 4.2: If a linear multistep method is A(0)-stable then
{a,20 or ¢, <0} and {b, 20 or b,<0}, v=1,... k.

4.2 Properties of A(qa)-stable Methods

As usual we will suppose that (p‘U)=1 and that p21 (so
that the methods are consistent).

The first result which shows that we do not recover the
explicit methods is the subject of the following theorem.

Theorem 4.1: An explicit linear multistep method can not be
A(0)-stable.

The order restriction is weakened at least somewhat as the
following two theorems show.

Theorem 4.2: The trapezoidal formula is the only A(0)-stable
linear multistep method with p 2k+1.

Theorem 4.3: There exist A(d)-stable linear multistep methods,
0<a <l§ for k=p=3 and k=p=4.

We forego developing the proofs of Lemmas 4.1 and 4.2 and
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6f Theorems 4.1, 4.2, and 4.3 since the proofs are generally
analogous to the proofs in §3.
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§ 5. THE METHOD OF JAIN

With the limited succeéss of removing the restrictions on
the class of linear multistep methods imposed by the various
notions of absolute stability, there remains the possibility
of retaining the strongest of these notions, but to leave the
class of linear multistep methods. An example of such a method
which we will now describe is due to Jain.

5.1 Description of the Method

We start with the initial value problem

5.1) y'(t)=f(t,y), te(a,bl
y(a) =s.

Here y and f are m-vectors.
We consider .the function

y'(t) +Py(t)

where P is an m Xm matrix to be specified, and we perform the
following three steps.

i) Approximate y' (t)+Py(t) by a polynomial of interpol-
ation, Q(t),which uses Hermite interpolatory data at the points
thi s i=0,1,...,n-1.

ii) Integrate the differential equations y'+Py=Q from t
n+l

~ Of (t gy (t ))
iii) Choose P as anapproximation to (31 - —
, Sy/, dy

to t

W
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Step (1) results in

n

5.2)  y'(t)+Py(t) = Z% hi(t)(fi+Pyi)4-2§1 zi(t)(f£+Pfi)+TE.

PR

Here h; and h; are the fundamental Hermite interpolation poly:
nomials of the first and second kind, respectively, correspond-
ing to the points t, ,. 1=0,1,...,n-1. Also

foef(ty). fi=F'(ty,),  i=0,1,...,n-1

and
1 {’2?’1} o .
TE = ———F Eyre(t), a <& <h,
(on)! (E)m=(t)
where
F(t)=f(t) +Py(t).
Now we apply step ii) (i.e. integrate (5.2)). We find
. P -Pt, n -,
5.3) Ypsg =€ ¥, te +1 [lgz HiFi+HiFi]+Rn ,
where
tat
P .
H, =f e h (t)dt,
tn
tn'f"i
— P
H, =f e h,(t)dt
tn
and
"Ptn-é'I Pnta
e P 2
R, = f: SR (gyn2 (e )de .

n

- As far as step (iii) is concerned and in the case where
m=1, a natural choice for P is

fn"f(tnjyn’-f}
Yn"In-t

In the case m > 1,the.choices for Pdepend upon therelative
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s . . Ph . . . .
difficulty in evalvating e A simple choice is the diagonal
matrix whose ii-th entry is

i1 d 1+ m

i 1
fnf (tn"yn"*'»‘yn 2¥n-1-¥n J";"f'yn)

R S
Yo" Yno1

As we see in (5.3), the method is far from being a linear
multistep method.

5.2 Properties of the Method

The properties of this method are given by the. following
theorem.

Theorem 5.1: The method of Jain is A-stable and 6f order 2n.

Proof: Let f(t,y)=Ahy where A is acomplex constant with Re A <0
(i.e., the case of the test equation). Then P=-A and for each
i,

Fi = f; +Pyi =)\yi —?\yi =0

and
Fi' =fi' +Pf. :)\yi' —?\ylf =0,
Then {5,3) becomes
- Ah-
yn+1 =€ Ya
Then since Re A <0, lim ¥y, =0 for each fixed h >0,
n—w
This demonstrates the A-stability of the method.
Now insert s=(t-t )/h into (5.2). It becomes
ceThy whe PR S (HF.LHF)| +R
5.3) Ypeg =€ Yy ¥ he &, (HFHE )P+ R,
Here

1
H, :—.f ePhski (s)ds, ki(s)=h;(hs+t;)
0

1 .
E—i :f ephsﬁ,i(s)ds,. Ei(s) =?{i (hs+t.), i=1,...,n
0



and
h?nﬁ‘I » 1 » )
R - N R R N A O T
n on! 0
. h?n‘?‘f 1 X .
PR RO e yn2 s)ds c0RPT)
2n! 0
h?n‘#‘! Ph 1 on+ 9
Ey ¥ — n
- e F””’(g’)fn?(s)ds coh )
on! 0

by the second mean value theorem. Then

R =TT PREOM) @)y Log

1
- 1 2
A = Qn!‘/;n (s)ds.

Thus the method is of order 2n and the theorem is proved.

h2n +2

)

where

5.3 Some Special Cases

The .integrals for the determination of the Hi,ﬁ; and R

are of the form
1
Prsf X i
I = e s( A.sl>ds
n 0 i*—f A

where N=N(n) is an integer. In addition

2n -r Ph 2n R
H, =5 a (Ph) e +h b (Ph) '

vorEt r=1

- 2n -r Ph n -r
H. -2, a (Ph) e <+h 2_ B (Ph) .
Yog=tr T i=1 T

In the sample case, n=1, we find



1
i, j; se’ P ds = [(Ph)* - (Ph) 21" - (Ph)e

1
Ay = l—f s%ds = RS
. 2.4y 6

5.4 Criticism

While Jain’s method is A= stable and of higher accuracy, it
is costly to use.
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§ 6. METHODS OF THE IMPLICIT RUNGE-KUTTA TYPE

By leaving the class of linear multistep methods we found
in §5 in the method of Jain, an A-stable method of order 2n,
n=1,2,... . In this sectionwewill discuss the well known class
of Runge-Kutta methods and show that in this class of methods
we may also find A-stable methods of higher order.
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6.1 Runge-Kutta Methods with v-levels

We start with the differential equation
6.1) i--f(x)

where x and f are m vectors.
A Runge Kutta process with v levels is defined by the fol -
lowing relations

v

a) X.:' =X 4 h Z: b k;
i=1 7
6.2) ,
2 a; k). i=1.2, .. .,v.

b) ki = f{x+h
j=1

These relations are used to define an approximation. x¥,
to x(t ,;) in terms of an approximation to x(t ),denoted simply
by # in (6.2). The coefficients bi’aij? @jxi,Qi...,V are to
be determined by a procedure which we will now describe.

6.2 Determination of the Coefficients

By using (6.1) we may write the following list of formal
relations :

eV
x(g) =f1f
6.3) R AN

4 FaF e 3(FaF) (faf)

Here f.=f_ , the Jacobian,an array of order 2, fo=f,,. the Hes-
sian, an array of order J,

The Frs; r=1,2,.,,,s=1:..,;pr are called the elementary
differentials.For each index r,there are p, suchdifferentials.

For example, pi=1. p,=1, ps=2, ps=4.... and



35

Fu’f; F21’:f1f; Fsa.”‘f-zfQ: Fs',zr-fff._
Now let ¥ and x denote the exact value of x at t .q and
t, respectively. Next substituting the relations in (6.3) into

[e4]
the formal statement x¥-x = > hnx(n)/nf, of Tavlor’s theorem
Y

gives n=1

| © 1 (&

6.4) xt-x =20 —h (Z a F__).
=1 ri &y Trsrs

Now if we formally develop each k., i=1,...,v inaseries,
we may write the first relation in (6.2) as

v © 1 . P
6.5) h 2o bi.ki = Z; h (E BrsqbrsFr's)'*

i=1 n=1 (r-1)! s =1

Here the B . are numerical coefficients while the ¢, are func-
tions of the b, and the'aij. ‘

For a Runge-Kutta process to be of order of precision, p,
it is necessary that the formal series in (6.4) and (6.5) agree
to p terms. Thus we find

6.6) b =0 /(B ), r=1,...,p, s=1,...,p,,

P - .
as a set of M==231 P, equations for the determination of the
- foges

v(v+l) coefficients ai’bij i,j=1,...,v.
One distinguishes three classes of Bunge-Kutta processes
as follows:

Def. 6.1: A‘Runge*Kutta’process is said to beexplicit if aij=0,
j2i, is said to be semi-explicit if a,.=0, j > 1, and 1s said
to be implicit otherwise. The number of available coefficients
in these three cases are Ne, N_, and N;, respectively where

N, -v(v+1)/2, N, =v(w+3)/2, N, =v(vel).

The relation between the quantities V,NeﬁA;;Ni; p and M
is expressed in the following Table 6.1.

The M equations in (6.6) are not independent and so it is
usually possible to satisfy themwith a number Nof coefficients
considerably smaller than M.



v | N, N, N, P M
1 1 2 2 1 1
2 3 5 6 2 2
3 6 9 12 3 4
4 10 14 20 4 8
5 15 20 30 5 17
6 21 27 42 6 37
7 28 35 56 7 85
Table 6.1

6.3 An Example

Let us illustrate the last point .by means of the case
p=v=3. In this case an explicit calculation using (6.2) gives

6-1) h 2o bk =h( 20 b Fi1+h2 2. b.c.)Fuq
i:f & T i"*l T 131 i i
R°T N 3 3 N
T“Q—{(xgz biCJF“w E}% biaijc]>F39]+O(h)
where
3
TSRS

This must be set equal to the right member of (6.5) which is

3

6.8)  h(Biiby)Fyy+ B3 (Bogos)Fas +‘%;‘(Bsfﬁstsi*‘Bééﬁsgpsz)‘*O(h4)°

Comparing coefficients of the elementary differentials in
(6.7) and (6.8) allows us to determine B, ¢,  as functions of

By =a/r ' L T
BisZb, =1 111 1
Boy Sbyc, =1/2 2 |1
Bou Th,c?=1/3 3|1 } .
Baz > sziaijcé =1/3 | 3 | 1 |

Table 6.2



the a; and the bi’ These are

3
B11¢11= E% bi
. 3
B21¢21 :'i§1 bici
6.9)
3
le¢s1 = z: bin
i=1
3 3

BsoPss = 2 2: 2. b.a..c.

i=1 j=1 LI

Next the expression in (6.4) must be developed so that the
o, may be obtained. This reveals that 0y.=1, @54=1, d5,=1 and
0go=1. (Recall. that we have already noted that pi=p,=1 and
‘P3=2)= . .

Now we may assemble the information developed for this ex-
ample in the Table 6.2.

One associates the tableau of coefficients mlable 6.3 with

the process

Aig ouns aiv cq
L4
: where ¢c. = 2_ a..
a. ! a - ¢ voj=g0 U
vl "7 vy v
b‘l .’..._by
Table 6.3

A particular solution of the equations displayed in Table
6.2 is displayed in the version of Table 6.3 corresponding to
v=3 as follows:

0 0 . 0 0
1/2 0 0 1 1/2
-1 2 0 1

1/6 2/3 1/6

.Table 6.4

with B;1=B21=Bs1=1 and Bs.=2.

This particular solution is due to Kutta.
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6.4 Semi-explicit Processes and the Method of Rosenbrock

Among the implicit and semi-explicit Bunge-Kutta processes
are A-stable methods. The implicit processes lead to methods
which are difficult to apply in general because at each step
of the integration the k.. i=1,.. .. ¥ must be determined as the
solution of the system of v nonlinear equations (6.2b).

In the semi-explicit case the nonlinear system is trian:
gular in the sense that the j-th equation in this system con-
tains only the unknowns k,, i-1,....j. Thus each equation in
turn need only be solved for one unknown, i.e.. the i-th equa-
tion for ki" i=1.....v.

Let us consider the semi-explicit case and replace the
solution procedure for the k., i=1,....v, by a single step of
a Newton-Raphson iteration. The resulting method is

v
6.10) x¥=x+h 2‘31 bk,
1=

LV AN

i-1 -1 i-1
k. =[I"haiifx xq—hj};,i a..k. ] f x+h}§1 cijk]., ,) =1, ...,

where I is the m'Xm identity matrix. This is an example of a
method which may be called a linearized semi-explicit Bunge-
Kutta process of the Rosenbrock type, or simply a Rosenbrock
method. _

The case p=3, v=2 becomes, using Rosenbrock’s notation,

x¥ =x + h(R ik +Rok,)
6.11) ko= [I-hayfi)70f
k., - [I--ha,gfi(x‘g’hcik1)}“1f(x+hbi-k1)'

The are six undetermined coefficients.The set of equations
analogous to (6.6) for the determination of the six unknowns
are four in number and are

R, +R, =1
. 1
Rya, +Ry(ay%by) I‘E‘

6.12 )
) Ria?+Rg[a‘§+(ai_%-a2)bil' :‘—é'

. 1
Rz<¢2'01 "“3 bf) "‘é‘«
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A particular solution of (6.12) due to Rosenbrock is

a,=1+1/46

ay=1-1/N6

by =ca=[-6VG+ (58+20¥6)") / (6+0F)
Ry =-0.413154

R,=-1, 413154

‘The two matrices in (6.11) which must be inverted become
identical under the constraints @y =a, and ¢;=0. This consider-
ably reduces the computation per step. Under these constraints
the equations (6.12) become

R, +R,=1
a, +R,b =1/2
6.13) LT
a? +2R,a.b, =1/6
R,b% =1/3.
(6.13) has two solutions. Calahan' studied the following
one

R =3/4, R,=1/4, ay=(1+¥3)/2, b, =-2/3.

6.5 A-stability

‘To demonstrate the A-stability of these linearized methods -
requires their application to the scalar test equation (i.e.,
f=Az, f,=A) and a study of the location of the roots of the
characteristic equation corresponding to the difference equa-
tion which results. We forego these details.
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§ 7 EXPONENTIAL FITTING: LINEAR MULTISTEP METHODS

7.1 Exponential Fitting

We have now completed a review of some of the ideas and
methods for approximating the solution ofstiff equations which
use a technique coupling small mesh increments during a tran-
sistory stage with a property of absolute stability during a
permanent stage.

We now turn to a second class of methods which employ a
different idea. Namely those which employ exponential fitting.

In the context of a simple example we have seen in §1 that
the control of the error, e =u -y, {c.f.(1.6)), depends on the
stability of the amplification operator, K(h4d), and the close-
ness of K(hA) to the solution operator, S(hA). We saw 1in that
example that K(h4d) is made close toS(h4) by making K(hz) close
to S(hz) for z in the spectrum o(4).This in turn is accomplish-
ed by making K close to S in a neighborhood of the origin and
then shrinking ho(A) into this neighborhood by taking h small
enough.

The methods of exponential fitting replace the single point
at the origin by a set of points which we may call the fitting
points in the complex plane. Then K(z) is made close to S(z)
at all points in this set. Then by taking h small, the collec-
tion of points ho(A) tend to one or another of the {fitting
points.

This idea becomes interesting for stiff systems when we
note that fitting points may be very large in magnitude,so that
h is not required to scale the entire spectrum of A into a
neighborhood of the origin. Of course in addition to being
fitted, a method must be stable and convergent in some sense.
Otherwise it is of no computational value. We discuss these
latter points in §7.4 and in § 8.

7.2 Some Examples of Exponential Fitting for Linear Multistep
Methods

Wevmay see how this idea works through use of several
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examples. Consider the following linear multistep formulas

(7.1) - (7.4)

7.1) Fyo xp,y-2x,-hl(1-a)i, ,vax ] =0

The order of the method is p=2 if a=1/2 and p=1 otherwise.

7.2) F, X g% ~-§-h[(1+a)kn+1+(1oa)kn)]

n

1 . . .
i-jz hQ[(b+a)xn+1u(b~a)xn]‘= 0.

Here p=4 if bvf; and a=93'p:3 if bafg, a#0 and p=2 if b%%%q

In particular for b=i;, (7.2) becomes

h . .
7.3) Fgy. X1 %, ﬁ?? [(1+a)xn+1+(1—a)xn]
h® :
"3 [(1+3a)% ,,-(1-3a)% ] = 0.

In turn, when a=0, (7.3) becomes
i

7.4)  Fyu ¥n+t " %n _7 (£n+1+"cn) My (k.n-ﬂ"%n') =0.

12

(7.2) and (7.4) are not theusual linearmultistep methods since
they employ second derivatives of «x.

The exact solution of the test equation (c.f.(3.2)) satis-
fies the following recurrence relation

7.5) x(t ) =elx(t ), q =Ah.

The amplification factor of F, is K, (q). v=1,2,3, 4 where
Ki(q) = (1+aq)/[1-(1-a)q]
K,(q) =[4+2(1-a)q+(b-a)42]/[4»2(1+a)q+(b+a)q2l
Ks(q)=[12+6(1-a)q+(1-3a)q?)/[12-6(1+a)q+(1+3a)q?}
K.(q) = [12+6q+q2]/[12-6g+q2].

7.6)

It is a simple matter to verify that



7.7) T (q) =K, (q) - ¢* =0(¢"")

as g0, since p has the various values 2, 3, or -4 as we have
noted as the case may be.

We introduce the following definition of exponential fitt-
ing.

Def. 7.1: A method with truncation operator T(¢) is exponential-
J

ly fitted toorder rat apoint cif dj T(q) léchOA j=0,1,...,r.
dg’

We note that the formulas F are exponentially fitted to
order r 2v at the origin. The remaining parameters may be chosen
so that fitting occurs elsewhere as well. If we can adjust F,
so that T (hy)=0, where the magnitude of ¥ is very large, then
it is reasonable to use F, to solve stiff systems whose spec-
trum is divided into two clusters.The first cluster lying near
g=0 corresponds to slowly varying modes; the second cluster.
lying near g=hy=c, corresponds to rapidly varying (stiff) mo-
des. -

Let us now consider some fittings of the F,.

For e¢=0, F,. is fitted to order r=0 at c=-0,

1 N .. . ,
For a=-§-$ the trapezoidal formula,the fitting is max1mal

at g=0 (p=r=2), but there is no fitting at ¢ =-®  since
lim T,(q)=-1.
g—-® .

For v=1 or 3, T,(c)=0 defines the parameter ¢ as a func-
tion a=a,(c) where ‘

7.8) ay(q)=-q t-(eT-1)t

and
as(q) =—;—[12+6q+q‘2- (192-6+g2)e?) /[ 2g+q2- (29-92)e?],

respectively.
To(c)=Ty(c'}=0 define a and b as functions of both ¢ and
c¢'. These two functions are respectively:
as(9.9") = 2Lf(q)-f(a")1/la" f(a)-af(a")]

and

bo(g.9") =2(a'-q)la" f(a)-qf(qa")]-
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Here ]
F(q) =q2(e%-1)/[2+q+(q-2)e?].

7.3 Minimax Fitting

As an alternate use of free parameters, we may attempt to
minimize T(q) in some global sense.We illustrate this by means
of the following example dealing with Fj.

Let
T(a)= max |T .
(a) = max |7(2)]

From (7.7) the following lemma results from a direct cal-

culation. :

Lemma 7.1: e=a;(c) defines a one-one mapping- of (-®,0] into
(o,1/21.
Now let ag be defined by
T(ag) = min T(a) = min T(a,(c .
(%0) = nin T(a)=_nin Tas(e))
2

Then
ap=0.122 ... . T(ag) =0.139 ...

and the corresponding fitﬁing point co=-8.19 ... . Notice that
for the backward Euler formula T(0)=0.204 ..., while T(1/2)=1
for the trapezoidal formula. '

7.4 An Error Analysis for an Exponentially Fitted F,

In the classical case fitting abt the origin is a form of
control of the local error, i.e., is tantamount to.what we call
local error analysis. Then we see that exponential fitting is
a somewhat complicated variant of local error analysis.Just as
in the classical procedure wherein a local error analysis by no
means assures the control of the global error,we also lack this
assurance in the case of exponential fitting.We must supplement
the local analysis with a stability analysis and them combine
the two to demonstrate.the value of the method by constructing
a global error analysis.

‘We will illustrate such a global error analysis with F,
" (c.£.(7.1)). In §8, we will consider a more general framework.
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When F, is applied to the linear system (l.1), viz.,
7.9) y =4y,

we find the following recurrence relation for the global error,
€
n

7.10) e, 4 =Ki(hA)e, + T (hA)y, .

From this in turn we get

nl .
")
7.11) n Ty KA(M)TL(M)y, g
where we have assumed that the initial error, ey=0.
The following lemma follows from a direct calculation.

Lemma 7,2: lKl(z)i‘<i for z€ (0,-©) and acl0,1/2].

This lemma asserts that F; is A-stable for acl0,1/2]. We
now consider a to be restricted to this interval.

Now let us suppose that A is neadtive definite and has
distinct eigenvalues 0>A,, ..., >A;..Let the resolution of
the identity, relative to A be given by

n

7.12) I=_Z:Ji P, (A)

where the Pi’ i=1,...,m are appropriate polynomials.
Then '

7.13) ]VKi(hA)Hh‘Yég Ki(hkijPi(A)lL§canst i%!Ki(hﬁiﬂ‘éconst

The first equality in (7.13) follows from (7.12) while the last
inequality follows from Lemma 7.2, since the Ki are negative.
Using (7.13), (7.11) becomes

7.14) | e H <const n | T, (na)ll.

Now from the properties of T;(z) for 2 near zero, we may
conclude that

7.15) [ T.(2)] <const min(1,z2) 2<0.



On the other hand given.-c¢> 0 and if @=a,(c) (c.f. (7.8)).
then from Taylorysitheoremi we conclude that '

Ti(z) = (c-z)(Ki(%)+e ).
_From this i1n turn we have that
7.16) | Ti(2)| €constlec-z], c<0, 2<0.

Now let (I,,I,) be a partition, II, of the integers
I={1,...,n}. Then combining (7.14)-(7.16) andutilizing the re-
solution of the identity, we get the following estimate for

en
7.17) H enH‘Sn const n}LIn {imeaxli'}iQ)\'l?"+im6c;x2h|’y~?\iiH';

Smax Imin(lEn 5, ly-nu )0
iel v A
(Recall that c=hy).

The property of Lemma 7.1 (i.e. the fitting) was observed
by R.A. Willoughby, while that of Lemma 7.2 (i.e., the A-
stability) was observed by W.Liniger. The global error analysis
was made by W.L. Miranker. Thus, the simple scheme F; used in
an exponential fitting mode for approximating the solution of
stiff equations is called the Willoughby-Liniger-Miranker me- -
thod. '

REFERENCES

[7.1} Liniger, W., and Willoﬁghby, R., "Efficient Integration
Methods for Stiff Systems of Ordinary Differential Equa-
tions", SIAM J. Numer. Anal. 7 (1970) pp.47-66.

[7.2] See also the appendix.of reference [g.1}.

§ 8. FITTING IN THE MATRICIAL CASE

In this chapter we will study the process of exponential
fitting in a setting which is more general than that of § 7. In
particular, we consider a class of linear multistep methods
with matricial coefficients.



- 46 -~

8.1 The Matricial Multistep Method

We consider the initial value problem for the following
system

8.1) x =4Ax , t>0

Here x is an m-vector and A is an mXm-matrix of constants.Evi-
dently

8.2) ‘ x =€ x

_ Now consider the three functions L(z),R(z) and C(z) given
as follows:

. _ L {(r-j)z
L(z) "},290 (Olj+sz)e
8.3) : R(z) = éi (7.+23.)e(raj)z
j=0 ] J

C(z) =L(z)[R(z)17"..

Here the ajﬁﬁj,yy and 5}, j=0,...,r are each mxm-matrices.Note
that

8.4) L(hA) - C(hA) R(hA)=0.

Let P(z) be an approximation toC(z) and consider the fol-
lowing formula, which is an approximation to (8.4), as a nu-
merical method for determining u, as an approximation to xn;
n=r,r+1,...

. r } r . r
8.5) X ou, +h F_Z_‘b BjAun«j'P(hA)[‘j:O ajun=j+h ]-%GjAumj]:O‘

If P(z) were equal to C(z), this expression would be an ident-
ity for solutions of (8.1), (c.f. (8.8)), that is (8.5) would
be fitted: (exponentially) at all points in the spectrum o(4). -
However, C(hA).is too difficult to calcylate, especially if we
use (8.5) on systems of the form (8.1) where A changes at each
.step. Thus we will choose P(z) as a function for which P(h4)
is easy to calculate and such that P(z) is an approximation to
C(z) in a sense to be made precise.
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8.2 The Error Equation '

To determine the quality of (8.5) as a numerical method
we proceed toderive an equation for the global error e =~u -x .
To do this we introduce the shift operator, H where

8.6) Hf(t) - f(t<h),

and we introduce two operations &S(H) and B(H) associated res-
pectively with L and R as follows:

4(H) - ]§>0 ’ (af +hAB]. Y

8.7)

r

G(H) = 22 (7;+hA3; )H |

j

(Except for the sign chéngeS B.=-B., the & here is the same
. J J
as the one used in §2).

Now
8.8) Hx=ehAx,
where x is a solution of (8.1).
Thus
8.9) (HA-AH)x = 0.

From this we may deduce that

®(H)x = R(hA)x,

§.10)
' é(ﬂ).x =L(hA)x
and
8.11) [6(H)-C(hA)R(H)]x, . =0, n=r,r+i,...

On the other hand, we may write (8.5) as

8.12) [4(H)-P(hA)&(H)lu___ =0, ner,r+d, ... .

r

Then by subtracting (8.11) and (8.12),we find the follow-
ing error equation
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8.13).  [&(H)-P(hA)@(H)]e, = [P(hA)-C(hA)IR(H)x, .,
n=r,r+i,... .
8.3 Solution of the Error Equation

To solve . (8.13) we introduce the operator J(H) as follows:

8.14) ~ S(H) =4(H) - P(RA)R(H).
FCH) |

We may writejas a polynomial in H as follows:

8.15) SH) -2 s.H
j=0. J

where

8.16) s, =s,(A)=0; +hAB, - P(hA)(y; +hAb;), - j=0,...,r.

Thus (8.13) may be written in the following form

8.17)  (H)e,. =[P(hA)-C(hA)IR(hA)x ne=r,r+d,...

n-r’

Now let
r ) e
8.18) S(z) =X s,z 7
| i=o J
be a polynomial with the matricial coefficients s;, j=0,...,r.

Suppose that [er(z:f)]rl is an analytic function of 2z in a
neiglborhood of 2=0 and let its power series be given by

8.19) [27S(z" )7 =2 o,
. j=0 7

where the o; are matrices. {(c¢.f. Lemma 8.2 below)
Multiply (8.17) by oy, and sum the result over n from r

to N. ‘For the left member of this operation we have
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N N r rej
8.20) X UN»n'f(H)enrar =3, TN > st e

n=r n=r j=0

=008y + (T1Ro+ToRy ey 4 +1
+ (O'N“tﬁlb + ... +UNsn)er

+ linear combination of eg.€4,...:¢, ;.

From.the defining property (8.19) of the o, j=0,..., we may
. K ]
deduce .the following: :

‘ r
8.21) . E’o ON. ;S beol

n

where I, is the mXm identity matrix. Using (8' 21)- in (8.20)
and assuming that the initial errors eg=e€;=...: e . 1=0, we find
that the right member of (8. 20) becomes s1mply ey. Thus we are
led to the solution of (8.17), viz.,

N
8.22) ey = Z: On-n [P(hA)-C(hA)IR(hA)x

nr'

8.4 Estimate of Global Error

To estimate ey we require a usual stability statement and
an accuracy statement. Stabilityiis the subject of the. follow-
ing two lemmas. ‘

Lemma 8.1: If Z; s (?\)z reJ satisfies the ro‘ot‘ condition for

each eig_envalue :\60’(.4) then the determinant 'S(z)‘ also sa-
tisfies the root condition.
r

Proof: Let f(A) Z;\O s, (A)z . Suppose that the determinant.

{f(A)l vanishes for a value of z, then ‘f(A)-i—p»I -uI lvanlshes
Then p=p+f(\), for each A&o(4) or f(A)=0 for: t,hat value of z.
This completes the proof of the lemma.
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Lemma 8.2: Let the determinant 15{2)1‘0f S(z) obey the root
cond1t10n If the determinant of so is not zero,then the matrix

[z S(z )J "t is analytic in a neighborhood of z=0. Furthermore,
the matrices o j=0,1,..., given by (8.19), have uniformly
bounded norms. ' ‘

r . .
Proof: Since er(z71)==;E%vssz and 1SOI'¥O, it 1is clear that
- - ]z
Lz S{(z "% is analytic in anei orhood of the origin. Since
[2"S(z" %)) i lytic i ighborhood of th igin. Si
ler(z'i)[‘=zmr]S(z”1)ly the root condition locates the roots

of the polynomial |2S(z"* )| outside the open unit disc and those
roots on the boundary of the unit disc are simple. Since

[er(z.l)]-—1 =I-[mat,rix of polynomials]/ler(z—l)[,

it suffices to show that the power series for the reciprocal

. r - - .. .
polynomial, |2"S(z"*)]"* has bounded coefficients, given that
its roots are outside - the open unit disc, with those on the
boundary being simple. Let mr=g and let

mA
le(z"1 [Etz]1=zu.z].
j:o J
Then

u oLl ("” 2 t§> dz
no2mi ]

where the contour of integration lies inside the unit disc and
encircles the origin. If we move the contour through the unit
disc and out to infinity in all directions, the integral will
vanish if ¢ 21 and we are left with a sum of residues.If there
is a pole {o on the unit disc, it 1is simple. Let the residue
from it be 7o. Then

<nf1 th - 1)

which is 1ndependent of n.
If there is a pole at {, of order p+1 outside the unit
disc, let the residue from it be 7,. Then

. / q )
__dp | v M(w AN
Ta d{," (¢-8,) 4 J_Z;-:v) f]-§> ]

ITOI'= i

t=¢, )
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Let Q({) be the polynomial given by
g N
Q(.c)'=(.2 t,--éj)/(c—cl)””.
j=0

.Then since Q({) is independent of {,

ry ==L L@ o))
aly '

Then performing the differentiation we get

P . ] p-j '
-5 (1) L) Lo e

el sy
P . +5 dp-j L
- (-1)’<‘?)n(n+1) e (-1 S o0t
j=0 . J . dé’i‘] .

Thus
| 74| < (nep) F/1 L, 1"

where F is a constant independent of n. This estimate shows
that |71| tends tozero when n tends to infiniﬁy since |C1|”>1._
‘Since there are at most a finite number of residues to be ac-
counted for, the coefficients u,, n=0,1,..., are bounded uni-
formly in n and the lemma is proved.

If S(z) satisfies the hypothesis of Lemma 8.2 then that
lemma and (8.22) may be combined to yield

N
8.23) |leyll-Sconse||1P(ha)-C(ha)IR(RA)I 12 15, 1.

If Nh=1, (8.23) becomes .
8.24) [leyll <const h™*|| [P(hA)-C(hA)IR(RA)| 1.

To complete the error analysis the local error,which here
is Il{P(hA)-C(hA)]R(hA)|L'must be made ©(h).To accomplish this
we have at our disposal the specification of P, L and R towhich
we' now turn. :



8.5 Specification of P

Let P(z) be a polynomial which has contact of order 7;+1
with C(z) at a set of points in the complex plane which we
denote by hzi7 i=1,...,p. That is

8.25) P (hz )€™ (hz) <0, m=0,1,...,7; .
We suppose that z 70, i=1,...,p and we set 2z0=0.

Now divide the eigenvalues of A into p+f1disjoint clusters
called ko,...,k_, respectively, where

p
= } -z 1< . A.-z: |
ke = Deoa)iag -zl < in -zl
Ties are decided randomly.
Let
di 5 max lkj-zil; 1=0, . ..,D

A€k,
7 t

Now we resolve the identity by writing
P
8.26) I =2 > Z.. h4),
Boi=0 A€k, ‘J( )

where the Zij are appropriate polynomials and where for sim-
plicity we have supposed that the eigenvalues of Aare distinct:
Using (8.26) we may obtain

8.27) )
< P
[P(h)-C(hA)R(hA) = O g_;lki [P(RA,) -C(R\; )IR(RA, )Z, ; (hA)..

Using Taylor’s theorem with remainder and (8.25), (8.27)
becomes ’

8.98) [P(hA)-C(hA)IR(RA) =)\%O[P(h)xj JR(RN, )-L(P\; )12, (hA)
o i’

. . . . . »
" é \Zy o oy NPT R ) -c T R ))
i t i

R(m;)Z,, (hA).
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~ X .
The Aij and the }\ij are values of A arising in the remainder
term. '

8.6 Specification of L and R

To specify L and R we make the hypothesis

L(z)=0(z**)

8.29)

v+l

R(z) =0(z""")

This hypothesis says that theclassical (matricial) linear mul-
tistep methods sﬁ,(H)un"r:-O and @(H)u, =0 have order of accuracy
4 and ¥, respectively.

Using (8.29) in (8.28) gives

8.30) |I[P(h4)-C(rA)IR(hA)|] €C, max ({hdgl””lhdoi““)

£ 1 7.+

] "
1= T

Here C, and C, are appropriate constants. (8.30) is the local
error (estimate) for the numerical method, (8.5) which we are
studying. Combining (8.30) with (8:24) gives finally the global
' error estimate

8.31) |]eNI‘I'Sconst[maxoh-doi.v,lhdo}“>+§1‘hdi‘ji]°

Remark 8. 1: The classical theory of linear muitistep methods
corresponds to the case P=0.

8.7 An Example
" A simple example of the method (8.5) corresponds to the
case r=1, On=1, 0;=-1 and.-8~1. All other coefficients are zero.

We select one cluster, i.e., p=1 and P(z) is taken to be the
constant, C(hz,). The numerical method is

8.32) u -u m—————hén
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For this method p=v=7,=0. Thus the method has accuracy of order
zero at the origin and at z;. This low accuracy method may be
viewed as the forward Euler method with amesh increment scaled
by (e"*%-1)/(hzs).. \

For this method S(z)=Iz- (I+((e “*-1)/z,)A). By Lemma 8.1,
-|S(z)|'obeys the root condition if 2’1"((ehZ1"1)/Z1)K doés for
every eigenvalue A of A. This latter requirement is seen to be
satisfied for any choice of z, in an interval which itself 1is
contained in the interval (-®,A). (We are assuming that A <0).
Thus 1f z, is chosen as any lower estimate for the spectrum of
A, (8.32) will be stable.

Let us choose z, =Aég$ish-d) for some d2>0. To simplify

things, let us consider the special case corresponding to m=2
and to say A,=-1 and A, some very large negative number. The
difference scheme then becomes

eh()xl-d)_l P

8.33) u,-u,_y ='——X:TE—————-Aun_1 ~ don, M-t

since A <<-1.,

h(\i-d)
N . _ An and u =|I+% -1 A
ow since x =e¢ 'x__, and u = —_— qn_i,we have

>\.1'd
8.34) e =T(hd)e, _,
where
h(hy-d)
-1
T(hA) =T + S~ 2 4",
, A,-d

. A
T(hA) is then the difference between the exponential e h

)\ - .
and the straight line 1-(eh( : d)-i)A/(Al-d).At the eigenvalue
A,, we have

2
T(h\,) = }\d R eh}\i[1+d(7\1—- h> +O<d"’%»- h)z] +o(~d-;> .
1 1 1 )\.1

The following figure indicates how a forward Euler-type
formula may be used to stably integrate a stiff system.

From the figure we see that we scale the z-axis so that we
use the method (the straight line) ina region whereit isstable,
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but where its value (of thestraight line) is equal tothe value
of the exponential (the transfer function' of -the solution) at
the large eigenvalue.

.hZ/ l -Z
ehZ/_ {/
bz, %

Figure 8.1

We remark that. the matricial class of methods being dis-
cussed here is very wide and the operative qualities of the
class are by no means restricted to the scaling concept of the
example.

REFERENCES

[8.1] Miranker, W.L., "Matricial Différence Schemes for Inte-
grating Stiff Systems of Ordinary Differential Equations”,
Math. Comp. 25 (1971) pp.T717-728.

§9 FITTING IN' THE CASE OF PARTIAL DIFFERENTIAL EQUATIONS

Partial differential equations of evolutionary type along
with their numerical treatment are subject to being ill con-
ditioned. In some cases this 11l conditioning resembles the
state of affairs for stiff ordinary differential equations.The
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remedy of exponential fitting for the latter has a counter part
for partial differential equations andwe will review this coun-
terpart in this chapter.As we might expect in the partial dif-
ferential equations case, the idea of exponential fitting is
susceptible to a much wider scope of possibilities and- results
than in the ordinary differential equations case.

' We begin with a review of a simple problem and an element-
apy error analysis to motivate our discussion.

9.1 The Problem Treated

Let D be the domain of points, D={(x,t)‘t€{0,7ﬂ;]x]“<m}
and consider the initial value problem

(x,t)eD, t#0,

ut =)\ux’

u(x,0) = f(z), t=0.

9.1)

Here A is a scalar and u and f are real valued scalar functions.
This elementary problem has the solution

9.2) u(x,t) =f{x+\t).

In the half plane, t >0, we set down a mesh, M, with in-
crements At and Bx, i.e. M={(x}.,tn)=(ij,nAt) j=0,%1,...;
n=0,1,...}. We may suppose -without loss of generality. that
Dt=0x=h, o

Let u, (x) =u, =u(x,nh). Then letting Sdenote the solution

operator of (9.1}, we find

9
9.3) u 4 q =S h'szf)un, n=0,1,...,
A

z

S(z) =€ ",

as (9.2) shows.
As a numerical approximation to u, we take vnEvn(x) where

= . j - = s
9.3) Vg mZ\<:2 a}H v, n=0,1,...

vo = f(x)

Here 1 20 is anintegerand His the shift operator,Hf(x)=f(x +h).
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(9.3) is commonly called atwo level explicitdifference scheme.
If |al|+ untl#o, we will say that this scheme has width [. We
write (9.3) as

94) vn+1 =K'Un

where K is the amplification operator of the scheme.

If the powers ||K'1J, j=1,2,... are bounded, then the num-
erical scheme is stable and we may obtain the following bound
for the global error, e =v -u .

9.5) l|€ < const n max llTup||
Spsn
Here - T=K-S is the truncation operator and weare using I 1‘to

- dénote the norm in LZ*[-, ]
Using Taylor’s theorem and the consistency relations

9.6) t- 2 a. =0
st/
AN- 25 ja. =0,
st

(9.5) becomes

9.7) |le |1 <const nh? max Ilu M), me(x-1h,x+1h).
n A0<<

SPSn

If u/ exists and is bounded by a constant M uniformly in the
domain D, the bound (9.7) becomes

9.8) Ile |1 const Mh ,

provided that nh<T.

As the data, f(x) or the solution, up(x) becomes less
smooth, the bound, (9.8) becomes less satisfactory and con-
vergence of the pointwise error to zero with h becomes slower
and slower. Indeed, when the data or solution becomes discon-
tinuous, there is no bound, M, at all and the convergence of
the pointwise error is a delicate question. This difficulty in
turn is reflected in an inadequate state. of affairs in actual
computations for such problems.The problems are ill-condition-
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ed. Indeed, as the data becomes less smooth; the values of its
Fourier transform at larger frequencies tend to grow.Since the
spectrum of A9/0x is continuous, we see then that as S(A9/9dx)
develops, the solution,it receives increasing input at greater
frequencies as the data degrades.

We see then that the situation is quite analogous to the
case of stiff systems of ordinary differential equations,.

What we will do is toreturn to the bound (9.5) for I]enlk
and make l]Tu Ii‘as small as possible.That is we will minimize

llTuPI1'overthe set of real coefficient vectors a=(aq_;,....a;).

An alternative approach would be to minimize the max|‘Tupl1; a

u
procedure which resembles the minimax fittingdiscusiedin §7.3.
We will not discuss  this possibility here, but refer to [9.2]
and [9.3) for details. Instead wewill consider a set of special
cases in which we replace this maximation over u, “by an ap-
propriate choice of u, itself. The principle being that if we
wish to derive a numerical method with desirable properties
relative to a given type of problem (or data), we cause the-
properties which are wanted, to be taken on by constraining the
minimization or fixing the weight function u,. We will hence-
forth drop this subscript p.

9.2 The Minimization Problem

To formulate the minimization problem to be considered we
introduce the Fourier transform f of f where

f=f) =fe'i“”‘f(x)dx.

Then the minimization problem becomes

9.9) min"l'Tu|'|'=min|‘| (K-8)al].
a
Here
‘ RN ijz
9.10) K(z) T ae
§(z) =ei)\z=

Then the function to be minimized is
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9.11)  J=l(@&-%)all" f |R (heo)-8(heo)| ¥ ()] deo.

-0

Finally consider the following definition and the ensuing re-
mark.

Def. 9.1: We call the schemes - which use the vector of coef-
ficients, @, determined by the minimization problem (9.9),
schemes with best possible (local-) truncation error,or simply
best possible schemes.

Remarks 9.1: Schemes for which the 21+1 degrees of freedom re-
presented by a are chosen so0 as to achieve the relation

9.12) K(hw) =S (hw) +0((h)’),  p=21

are the classical schemes.These schemes are schemes of maximal
order or of maximal (local-) accuracy.They have been named the
most accurate schemes by G. Strang.

The relation (9.12) for any p<2l is equivalent to the
following p moment conditions

9.13) |§:<ljra). =A", r=0,1,...,p, p<2l.
J =

6.3 Highly Oscillatory Data
Derivation of the Quadratic Form

For problems with highly oscillatory data, a good choice
of u(x) is one such that

o e (tlel<esn
9.14) L ()] -
0, ]aﬂ'>c/h, ¢ comstant.
In this case we denote J (c.f.(9.11)) by J . Evidently
h
on [/

Y ~ 2
9.15) Jo = |K (hw)-S (hao)| " deo .
) -¢/h .

For c=m/A, we find



w
sin j—-
A
9.16) "J‘n",/}\=1+ Z a‘? —-—2..}\_(1. .
pilst 4 om0 A~
21 in X7
sin —
$ 2 2 2 4. a. A
T k=1 \ji*jo=k J1772 k
For c=m, we find
. . .
9.17) Jo=1+ 2 a2 SN s gy S
lilse 7 A
For c¢=p7, p an integer, we find
9.18) J_ =1+ 2o 42,
e lst 77

Consistent Formulas

Let us minimize‘Jﬂ with respect to « and subject to the
constraints of consistency (9.6). We may expect the resulting
finite difference schemé to be good uniformly over all fre-
quencies. The minimizing a; is

9.19) ; , ( j)k 1 v 2{: ( 1)kk ( 1)1
. = 1- _ s | A - +—
% 2l+1 [: plgEél A-k } ZSQ[ 'p[jysl A-k ] A-j £

sin AT

p o Sin AT g =—é.1(2+1)(21+1).

m

If in (9.19) we set A=m, an integer, we get

9.20) a. =95,

In this case the difference scheme propagates information pre-
cisely along the characteristic of the partial differential e-
quation, i.e., the numerical solution is exact.

In the case l=1, (9.19) becomes



2
S PRSI SO V-2
3L amz-1) A

9.21)

1 NP+l ] 2 1
@y, == 1+— pls= A+ pl-—.
3 L }\(}\2-1) i 2 A2-1 A+l

We also find that the minimum of Jﬁw is taken on when

, 1 in
9.22 e, = g
) i T 11 TTOS,

This scheme is always stable. To see this note that

p(l+1)-3

min a; =a ;o >0

(j|st’ p(l+1)(21+1) ’

since p22, 1 >1, and appeal to the following lemma.
Lemma 9.1: Difference schemes of the type (9.3) for which

l%;<laj=1 and a; 20, j=0,+1,...,tl are stable.
Fl S

Consistent Formulas Which Are Fitted at High Frequency

If the data has large frequency components, the constraints

9.23) T(z)

suggest themselves. The minimum of J}w subject to the four cons-
traints

9.24) .ﬂv)=T%0)=TGpl>=T<p£)=o
h h
occurs at
( 1 . ;
21+1 2pS, ' P eveR
9.25) a4 =

l
i) 1} j ‘
Le-(-1) ][ (1+21) 211 28, P odd.

\



In the case of even p,

p(l+1)-3

min a. =a ;= > 0,

st T (1) (2141)

since p, | 22. Thus 'in the case of even p, the schemes given by
(9.25) are always stable.

9.4 Systenms
Derivation of the Quadratic Form

This approach to the determination of difference schemes
may, be carried over directly to the case of systems of first
order partial differential equations.

Let u and v be g-vectors and let A be a q¢ Xxq matrix. We
consider the initial value problem for

9.26) u, =Au, (x,t)eD, t#0.

x

The difference scheme 1is
9.27) v, = & BHv_,

where the Bj’ IjI‘S l are g Xxq matrices.

Proceeding as before by taking Fourier transforms of (9.26)
and (9.27), we are led to the problem of_minimizing the follow-
" ing functional

9.28) J = 1R (ho)- (heo) yu (@) 1.

Here ﬁ(z) and §(z) are the ¢ Xxq matrices given by

R(z) = 2, Bjeijz
sl
9.29)
§(z) =eiZA
respectively.
' For the weight function we choose @(w) to be

1, |l <n/h,
9.30) d(w)=7"
0, otherwise
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Here 7m is the g-vector all of whose components are unity. This
choice of ﬁﬁw) makes J correspond to the functional J_in (9.17).

Now using (*,*) to denote the inner product in Euclidean
q- space, we may rewr1te J as follows:

9.31) J—;;f (B(2)-R(z)m , (8 (2) - R(z))m)dz .

. Now suppose that A is asymmetric matrix with eigenvalues,
A;, i=1,...,9. Let U be the unitary matrix which diagonalizes
A viz. : _ . . »

9.32) UAU™ = A

where Ais the diagonalmatrix whose ii-th entryis )\ i=1,...,9.
Let UB U 1-C and let Uij=it: Then (9.31) becomes

- .
| Az i . ..
9.33) J=—£—-f <<e1" Z C e - 2)_/.1,, el‘-Az - Z: C.el-]z)p. dz
27 . o lilst lirst

Now let CG=(c£n), m,n=1,...,9 and let-p=0u,..,,uq)r._Also let
A R
9.34) =2 .
n=1
Then J becomes

9 . sin AT j
9.35) J=ZEA‘:+ > o) —— E (-1) ]

m
m=1 PR it <1

The constraints of comsistency are

9.36) 2 j*B. -4, k=01
st !

or

9.37) T jtc. - Ak, k=0,1.
il st J

-An Example

Let us consider the case corresponding to the wave equa-
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. 0 ﬂi .
tion. Here ¢=2 and A-=c 1 0) Then we find

J becomes

1 1 j
9.39) J:Q[j{-_z [(c“) +(c21)2] _Qslnﬂcrf Z: 1)1 611]
J'—"

j=1 J

The solution to the constrained minimization problem 'is

1 1 :
B, -"-—2“’}’“1M1>+"2-M& *"’Z‘Ms ,
1 1
9.40) B, ?‘E"VOM; “'ZM:; s
1 1
B, ="'§~’)’1M1 - M, "'Z'Ms
Here

/11 1.- - a+B
9.41) My _(I 1): ( ) <G+B -0-B

¢ and B are arbitrary parameters and

11 K 1 p 2¢%-1
6 c+l1 c(c-1)

3 2
1 1 ,o( 1 1+c2>
, s r— (1= ,
9.42) Yo =t 7 i)

1 c o) QC'Q'.i
e o—
3 2 6(c-1) c(c+1)

. sin c7
with p = 2 ———0

o and B may be chosen so that the resulting difference is
more like the usual scalar scheme. This may be accomplished by
demanding that



9.43) B, =P, (4), k=0, £1,

where the P, (A) are polynomials in A. We find that a=B=0 and

P-,(A) ‘(_7 1 +—‘I>+(-—- At

1
9.44) Py (4A) =——on + —— YA,
. 2 2c

9.5 Discontinuous Data

The Scalar Case

We return to the scalar case and consider the problem of
optimizing the difference scheme when the data is discontinuous.
Thus we are interested in minimizing {Tul| when

1, x20
9.45) ufx) =
0, x<0.
In this case
d .
9.46) S(w)=lin | e “u_(x)dx =lin [ 1],
d-o -d Cd-o w

With this choice of #(w) and the associated weight function
2 . 12

Ia(w)l , we denote the corresponding value of IJTu|1‘ by JDV

Then ‘ g

-iwd

-1

2

dw

9.47) "Dfﬁiﬁfi'mlm‘"’)'?

[e:]
d
IT(hw)l = -2 Lin. | T(hao)| " E222% o
® w? o w2

Both integrals exist if T(0)=03 which we will always assume.

9
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The last integral here tends to zero as d~® as an integration
by parts shows.

A straightforward calculation now gives the value of Jj
which is «

21

9.48)  J, =4hn[ 20 In-jla -2k j?j’z:kajiaj?)].

lilsl!

We now minimize J, over the vectors ¢ and subject to the
constraints of consistency (9.6). The minimum occurs at the
following value of a.

ANed-j, j-1<NE],
9.49) a;=§-h+d -j, JEAEG +1
0, otherwise, ‘jl'Sl

These a; (M) are the translates of the cardinal spline of order
unity. From (9.49) we see that only those coefficients corres-
_ponding to mesh points which immediately surround the chdrac-
teristic of the differential equation, (9.1), which passes
through the forward time point, (%, (n+1)At) are non-zero.Notice
also that the a. given in (9.49) are non-negative. Thus this
most accurate scheme is always stable.

Systems

The procedure.of §9.4_for a system may be carried over to
the case of discontinuous data-at hand. The details are quite
similar and we merely display the following analogue of (9.40).

171 1\ cf1 1\ 1/a @
o =7<1?'1>+?<1“1>'7<BB
0 B_i(i-i Lot i>+_i_<a,_ot
4.5 ° 7 2\-1 &) 2(-1‘, -1) 2\B B
N
YT\t 1) 4\-3 1/°\@ p

Casting Bj into the form Ei=qj1+bjA, j=0, %1 where a; and

bj are scalars and I is the 2x2 identity matrix, we find that
¢ =f and



9.51)

lic-q l+e-0
P., (A) = I - A
+ (4) 4 4e
1-c+a l-c-a
o(4) 5 %%
o fec-a 1-3c-a
P,(A) = I -
2 (4) 4 4e

A simple and interesting special case of (9.51) corresponds to

setti

[9;1]

[9.2]

[9.3]

[9.4]

10.1

turbe

follo

10.1)

ng d=c.
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§ 10. METHODS OF BOUNDARY LAYER TYPE

The Idea of the Method

The generic initial value problem for a singularly per-

d system of differential equations may be written in the
wing form: '

dx , 0 £
= ) H 2 J x = 2
- f(txye) (0)
dy | ,
€ == g(?,x,y,s), y(0)=77,

dt
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where x(t), feR" and y(t), geR". f and g depend regularly on €
and g(t,x,y,0)70.

We observe that this class of systems are stiff. For ex-
ample, in the case that f=y and g=x+y, the eigenvalues of the
system are £ %+0(1) and -1+0(e). In a sense the smaller is €,
the stiffer i;\?né system.Thus the large collection of analytic
methods,commonly called boundary layer methods,used to charac-
terize solutions of singularly perturbed systems,should be ex-
ploited to generate numerical methods for stiff systems. Since
the approximations produced by these analytic methods improve
with decreasing €,we may expect that the numerical methods will
likewise improve with increasing stiffness in the system.

We will refer to numerical methods developed according to
this idea as numerical methods of boundary layer type.

10.2 The Boundary Layer Formation

We begin with a reviéw of the formalism of boundary layers.
The solutions x(t) and y(t) of (10.1) have expansions of the
type .

r 0

[ r
. € €
10.2) x(t) r=zo xr(t) r!+r=20 X (1) 1
2] r o r
10.3) Yt~y (1) s 2 ¥ (1),
r=0 " T r! r=0 T r!
whére
10.4) T=t/e.

The symbol ~, is used to denote the fact that the series
in (10.2) and (10.3) are asymptotic expansions. The first and
second sums in (10.2) and (10.3) are called the outer solution
and the boundary layer respectively. ;

Following well known procedures (c.£.010.2) and [10.4]) we
find that phe coefficients {xr,yr} of the outer solutions are
"determined from

X = tJ 2 10
10.5)0 xo = f(t, %0 yo. )
0 =g(tlx0:y010)

ir =fx(tlelyO:0')xr +fy(t;xo;yo;0)yr +QT
10.5), Vo1 =8, (t %0.%0,0)%, + 8 (1, %0,%0,0)y, +R_
r=1,2,...
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The dot represents d/dt. f  denotes the m Xmmatrixwhose ij-th
component is the derivative:  of the 1i-th component of f with
respect to the j-th component of x._fy,gx and g, are similarly
defined. Q. and R_ depend on t,%0,¥0,-+-,%,. . 4,¥,.4, 7=1,2,...
In particular

Q1 =f€(thO)y010)
10.6)

Ri = gg(taxO:yONO)‘

The subscript -€¢ denotes 9/09e.

Notice that for each r=0,1,2,..., the first. -equation in
(10.5), represents a system of differential ‘equations,. while
"thé second represents a system of finite equations.

Continuing to follow well known procedures, we find the
“following equations:. '

X5=0
107)0 ". ' o .
Yo’73(0:x0(0)+Xo,yo(0)+Yo;0)
X =p,
10’7)r Y;==gx(05x0(0)+Xo,yo(Q)+Yo,O)Xr+
+8,(0,%0(0),50(0)+Y5, 0)Y, +q,
r=1,2,..., '

from which the coefficients {X ,Y } of the boundary layer are
determined.The prime represents d/dr. p, and g, depend only on

"T,XO(O),yo(O),‘...,xr_I(O),yr__':l(O),Xo_,Yo,...,Xr_z,Yr_I, r=1,2,...

In particular

10.8) Pi(T) = F(0,€,50(0)+Yo,0) - £(0.£,0(0),0).

Supplementing the equations (10.5)_ and (10.7)_ for the x_,y ,
X and Y  is the set of initial conditions: ’

xr(o) +Xr(.0) =éb‘ro ’
10.9) .

y.(0)+Y (0)=m8 ., r=0,1,...,

where 8 _, is the Kronecker-4. Thedetermination of the expansion

is still not complete, requiring yet the following procedure
for distributing the underdetermined initial conditions (10.9).
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(i.e., there is one condition for each pair of variables).
We require that the X .Y be boundary layers; namely that

10.10) Lin X_(7) =Llin Y_(T) = 0.

T T~

Now the specification of the coefficients in the expansions
is complete, and we determine them in ordered groups of four;
{X X,y Y, }, r=0,1,..., as follows:

From (10.5);(10,7),(10.9) and (10,10) we have for r=0

a) X5=0, lim Xo =0
T—00
b) i0=f(t:x0{y0»0)) xO(O) =§
10.11)
. C) 0=g(t:x01y010); .
d) Y =g(0,€,y0(0)+Y,,0), Yo(0) =m-y0(0).

(10.11a) has the solution XOQO, and the succeeding equations
uniquely determine xo,yo and Y5. The condition (10.10) for Yo
is satisfied if the eigenvalues of gy denoted K(gy), satisfy

10.12) A(gy) <o.

Note: This condition (10.12) characterizes the class of stiff
systems to which the methods which we are now discussing
are designed to be applied.

We henceforth assume that (10.12) holds.

Similarly, for r=1, we have

a) Xi=pi(7), lim Xi(T) =0
T 00

b) %, =fxx1+f&y1+fe: x4(0) =-X,(0)

C) &0 =gxx1+gyy1+g€ ’

d) Y3 =ng1+ng1+q1 Y,(0) =-y1(0).

10.13)

To solve (10.13) we proceed as follows. From (10.13a) we get
. [+0]
X.(0) =‘f pi(o)do.
0

This and (10.9) determine x,(0)=-X,(0) so that (10.13b) and
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(10.13¢c) may be solved simulténeouslyfor %4 and y,.Then (10.13d)

may. be solved for Y,. This procedure may now be repeated for
each r=2,3,...

10.3 The Boundary Layer Numerical Method

We describe a numerical method which consists of construct-
ing the formal boundary layer expansion by solving the equa-
tions determining its terms numerically. _

Let h >0 be a mesh increment.Let z=(x;yjr and Z=(X;Y)T be
N=min vectors. Then from (10.2) and (10.3)

10.14)  z(h) =z20(h) vez4(h) + Zo(h/e) v €Zy(h/e) + O(*)..
Since the equations are stiff weare interested in the case

10.15) : ' h>>g.

‘This and condition (10.10) imply that Zp(h/e) and Z,(h/e) will
be near zero. In fact these terms will in general be exponent-
ially small in h/e. Thus we approximate z(h) by zo(h)+€z,(h),
the approximation being O(€?) (i.e. it improves with increasing
‘stiffness). The numerical method consists of calculating zo(h)
and z4(h). We must still compute Zo in order to obtain the in-
itial condition %;(0),required for the determination of z;(h).
(Of course more terms in the expansion 'may be calculated if
they are wanted). o v

The numerical method consists of the following steps (i)-
(iv):

(1) Solve

a) ¥o=f(t,%0,¥0,0), x0(0) =&

10.16) ‘
b) 0=g(t)x05y010)

for x0(h), ¥0(0) and yo(h). The numerical method for solving
(10.16a) should be of the self starting type.

(ii) Having determined yo(0) in step (i), solve
10.17) Yo =g(0,6,50(0)+Y5,0). Yo (0) =n-y0(0)

for Yo(7), 720. This must be done for a net of T-values, say
{0,k, 2k, ..., Mk}, so that
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[¢+]

10.18) x1(0)=-X1(0)=f p1(c)do
0

can be approximated to some prescribed degree of accuracy by a
quadrature rule:

(iii)
10.19)
M M
5}20 a;pa(jk) ,26 a; [f(0,€,70(0)+Yo(jk),0)-£(0,€,50(0),0)]

(iv) Having determined &£, the approximation to x,(0), in
step (ii1i), solve

10.20)
a) 4 =fx(t:xo'yo:0)x1+fy(taxo»yo:0)y1+f8(t,xo;yo'0);x1(0)=§1

b) Y1 = 'g;i(terIyOro)[gx(t1x0ly0¢0)x1"5'0+g€(t'x0:y010)]

for x,(h) and y,(h). _

~ Comment: Steps (i) and (iv) determine zo(h) and z,(h) res-
pectively. Steps (ii) and (iii) deal with Zo and are used to
determine the initial condition, &4, for x;. The method seems
to step across the rapidly varying modes (the boundary layers)
as they change over the comparatively great interval (0,h).This
is not quite true, nor is it accomplished without cost. Steps
(ii) and (iii) perform a mesh calculation with increment k in
7. Since 7=t/e, k will be hO(e). Thus,in order to calculate Zo
and x1(0), a fine mesh calculation must be performed. The cri-
tique of this boundary layer method is:

a) the parts or aspects of the given initial value problém
upon which to perform the fine mesh calculation are a well de-
fined subpart of the original system.

b) this fine subpart may be calculated with less precision
than the coarse part (step (i)). To see that this is so, note
that z4(h) depends on the fine part of the calculation through
x,(0). Thus an error in determining the fine part leads to a
proportional error in z4(h). But the approximation to the so-
lution is zo(h)+€z,(h). Thus the effect of such an error 1s re-
duced in order by the stiffness. Thus here again the stiffer
the system, the less precision needed in the fine part calcul-
ation,
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Remark 10.1: In Section 10.5 we will show how toeliminate this
fine mesh calculation.

10.4 An Example

We will now consider an example forwhich the steps of the
numerical method may be carried out analytically,.(i.e., to
infinite precision).

The example consists of the following initial value prob-
lem:

10 21) x=y-x, x(0) =&
.21
y =-100y+1, -~ y(0) =m.

The exact solution of this problem is

1 1

_ 1 7”100 1 -t T~ 700 - 100t
x = +| & + - e . - ————
100 \ 99 100 99

1 1\ -100t
= ——— T e— e
100 100

The steps of the numerical method are the following ones:
(i) Solve

10.22)

i0 =Yo~%o0., x(o) =§
10.23) 0

for 25(h), y0(0), and yo(h). We use Euler’s method with incre-
ment h in t to solve (10.23). We find

xo(h) = (1-h)E
¥o(0) =yo(h) =0

(i1) and (iii) Solve

10.24)

10:25) Yo(r) =-Yo(T), Yo(0) =m-y0(0) =7
on the mesh 7 =ik, i=0,.,.;M. Then evaluate

10



14 -

10.26) x4(0) f Yo (0)do.
0

Using Euler’s method with increment k in7 on (10.25) and using
the rectangle rule on (10.26),with-the upper limit of integra-
.tion replaced by kM. We find

10.27) x1(0) =m(1-k"" 1,

(1v) Solve

. M+t
x1=1-x1, x1(0)=77(1~k )

Y1 = 1.
Again using Euler’s method with increment h, we find
%2 (h) =he(1-h) (1-k" ')
y1(h).=1.

Combining (10.24) and (10.28) we find

10.28)

x(h) = (1-h)& + e(h+(1-h)(1¥-kM”)n)
"y(h) =¢.

Identifying € with 1/100, (10.29) becomes

1 . (1. 1 1 M1
#(h) = 3057 (1 h)< 700 "¢ 100 (1F )n>

1
y(h) = ——
y(h) 100

10.29)

10.30)

which approximates (10.22) to the claimed accuracy.

10.5 The c-independent Methed

A criticism of the boundary layer méthod which we have
just discussed is that it depends on the stiff system being
given in a form in which there 1is an identifiable small para-
meter which characterizes the system . as one of singular per-
turbation type.
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To deal with this criticism wewill now consider how bound-
ary layer methods may be developed even though there is no i-
dentifiable small parameter. Then the boundary layer numerical
method will be capable of being applied to wider classes of
stiff systems. . T ) T

We proceed by writing k=(f, g) z=(x,y) , and £=(£,mn) . The
initial value problem (10.1) is supposedly given in the follow-
ing form.

10:31) 3ek(t,z;€), 2(0) = .

€ here, although displayed, is regarded-.as unidentifiable. We
solve the system (10.31) numerically along the mesh .with in-
crement h, proceeding as if the system.wére not stiff.In terms
of the notation in §10.3 we start with m regarded as equal to
the number of dimensions, N, in 2z and with n as equal to zero.
Our method then produces zo(h) by a standard self-starting me-
thod. Now -we compare zo(h) and { component wise, i.e., we test
the following inequality: ‘

|2y (h)-L. |
10.32) J I >, j=1,...,N.
142, |

Here 6 is a prescribed tolerance. If the'tolérance is not ex-
ceeded by any component of zo(h), we accept the value of zo(h)
produced. If the tolerance is exceeded by a set J(Gasewesdy)
of n> 0 components of zo(h) we reject the integration step and
redo it as follows.

Set
%2
10.33) £, =L,
fo=ki =100, id0,
and set
Yi =%
10.34) Com =
g =k j=1,... N jel.

Now the systém has the form
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i=f(t, z:¢), x(0) =€
10.35) .
y=g(t,z;e),. y(0) =7

The parameter € is still unidentifiable, but we make the fol-
lowing assumption:

Assumption 10.1: f(t,z;e) and g(t,z,€) are analytic 1in € in a
neighborhood of €=0 except that g(t.z;€) has a simple pole at
e=0. We also maintain the requirement of (10.12) assuming the
boundary layer nature of the solution.

We look for a solution of (10.35) in the form

10.36) x(t) =%(t) vexy(t) +Xo(T) +eXi(T) + ...
10.37) y(t) =yo(t) +eys(t) +Yo(r) +e¥y(T) +...
For the outer solution we have
10.38) %o+ €41 = f(¢,%0, t0;€) * Ef, (t,%0, Yo, €)%1 + Ef, (1, %0, Y0, €)Ya + -+

10.39)  Jo + €Y1 = 8(t. %0, Yo, €) + €8, (%, %0, Y0, €)¥1 + €8, (1, %0, Yo, E)Ys + -+ -

By our assumption,the terms g,g, and g have simple poles
at €=0. Thus from (10.38) and (10.39) we deduce the following
equations (10.40) and (10.41) for 2%o,¥o0, and for €xy and €y,
respectively:

: %o = f(t,%0,Y0;€), x0(0) =&
10.40) '
0=g(t,%x0,50;€)-

Notice that we do not set €=0.
For cdavemenewe will hereafter suppress the arguments (t,
%0,Y¥0;€) of f and g. The equations for €x; and €y, are

exy =€f, x4 +€f&y1
10.41) .
Yo =Eg, %1 +EL Y-

We solve the last equation here for €y, as follows:
10.42)  ey: =g, [Jo-g,exa) = ¢) " [-g, " (g, +e, )-8, 87a)-

Here we replace Jo by its value obtained by differentiating the
second equation in (10.40) with respect to t.
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Combining (10.41) and (10.42), the equations determining
€x,; and €y, are respectively-

ety = (f,-f e, g, )exs - f8," (g,+8,f)
10.43) } e
ey:=-8,"8,8%: - g° (8,48, ).

Notice that € is still unspecified,but the quantities Ex4
and €y; which are sought are,except for the‘initial condition,
£x4(0), well defined. Moreover examining the right members of
(10.43) we see by Assumption 10.1 that the large quantities g,
g, and g, are neutralized, in the sense that they. occur as
quotlents, one of the other.

" To determlne the initial condition, €x,(0), we obtain an
g-independent’ determxnatlon of the boundary layers. Inserting

(10.36) and (10.37) into (10.35), we find

exs(eT)%égii(éT)+X5(T)+8X1(T)+.,.

=8f(87,x0(87)+8x1(€T)+X0(T)+€X1{T)+;,,;yo(8T)+.,;;8)
10.44) » L - ‘
ey (eT)+e %y (eT) Yo (T)+eYi(T)+. ..

=eg(eT, xp (eT)+exy (€7 )+ Ko (T)+eX 1 (T)+. .0, yo (eT)4. . 5€).
Here and hereafter we use the prime to deﬁote differentiation

with respect to argument:

Using Assumption 10.1, we deduce - the following equations
for Xo, X,, and Y, from (10 44).
' First

10.45) X5(r) =0.

As before X, (0)=0, since Xo(0)+20(0) =£¢, so that Xo(7)=0. Next
from (10.44) we deduce the follow1ng equations for X, and Y,:

10.46) Xi(7) =f(0,£,50(0)+Yo(T);€) - f(0,£,¥0(0),€),
and

10.47) | YS(T) =eg(0,€,70(0)+Yo(7)i€).

We integrate (10.46) from zero to infinity, using the
boundary layer property, liﬁ X(1)=0. Also using, #4(0)+X,(0)=0,
-
we get
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10.48) 8x1(0)=ef [£(0,£,y5(0)+Yo(T)i€) - F(0,€,50(0);€)]dr.
0

Now since Yo(7) vanishes exponentially fast asT increases
from zero,the bulk of the value of the integral in (10.48) comes
from the neighborhood of 7=0. Thus we may expect a good approx-
imation to the integral by replacing theintegrand by an inter-
polant using data at 7=0. This data is first, ‘

10.49) Yo(0) =m-y0(0).

from the initial condition, yo(0)+Yo(0) =7, while from (10.47)
itself we have ‘

10.50) Y5 (0) =eg(0,6,m;¢)

While we can obtain more data by differentiating (10.47),
let us approximate (10.48) using just (10.49) .and (10.50). The
simplest. approximation comes from replacing the integrand in
(10.48) by its tangent at 7=0 and integrating this tangent from
zero to its positive .root.In this manner we obtain from (10.48):

L£(0.€,m:2)-£(0,,70(0);2))"
f,(0.€,mi2)8(0,£,m58)

10.51)  exq(0) =%
' 9

In (10.51) all arithmetic is componentwise except the matrix
vector product fyg in the denominator. Notice that as. far as ¢
is concerned, the dimensions of both 'sides of (10.51) are in
agreement. » ,

A second choice in approximating (10.48) is to use the data
(10.49) and (10.51) to fit an exponential to the integrand,and
then to integrate the exponential fromzero to infinity.In this
manner we obtain from (10.48):

£(0.6,50(0);8)-£(0.6.mi8)
£, (0,6,m;¢)8(0.6.7:¢)

10.52) ’ ex4(0) =

The arithmetic here is to be performed exactly as in the previous
case. :

With either (10.51) or (10.52),(10.43) determines ex; and

€y, completely.
We now solve (10.40) for yo(0), Yo(h) and x,(h), by a
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numerical method as described earlier in 10.3. Then (10.43)
and (10.51) or (10.52) are used to solve for exi(h) and e€y4(h)
by a numerical method also described earlier. Finally we take

‘ ' %o (h)+exq(h)
10.53) Z(h):( )
» Yo(h)+eyi(h)

We now repeat the procedure on the interval (h,2h). This
time we start with the system already divided into a regular
and singular part as in (10.35). We then make a tolerance test
on 2(2h) compared with z(h) analogous to .{10.32). If the tol-
erance-is not exceeded by any component of z(2h),we accept the
~integration step. Otherwise we reject it and redivide the sys-
tem according to the scheme described above. We then redo this
integration step. Once a component is placed into the singular
part of the system, we do not remove it, even though its solu-
tion settles down and passes the tolerance test. Thus the flow
of components of z from x status to ystatus is one way. If this
policy is not followed, the component in question usually re-
generates a stiff mode (becomes unstable) atonce and it is then
pushed “back into the singular part anyway. This aspect of the
€-independent numerical method concerning the tolerance test is
an algorithmic aspect and should be adjusted to the particular
problem being considered. It is likely that for nonlinear sys-
téems where the stiffness comes and goes as 'the solution pro-
gresses, .a two-directional flow components of z between the
regular and singular parts may be called for.

REFERENCES

[10.1) Dahlquist, G., "A Numerical Method for Some Ordinary
Differential Equations-with Large Lipschitz Constants ,
IFIP Congress (1968) Supplement pp.132-136.

[10.2]'Hoppenstgadt, F., "Properties of Solutions of Ordinary
Differential Equations with Small Parameters",Comm. Pure

and Appl. Math. XXIV (1971) pp.807-840.

‘.[10.3} AIKEN, R.C., and Lapidus, L., "An Effective Numerical
Integration Method for Typical Stiff Systems",
AICHE J. 20 (1974) pp. 368-374.

[10.4] Levin, J. and Levinson, N., "Singular Perturbations of
' Nonlinear Systems of Differential Equations and As-



- 80 -

sociated Boundary Layer Equation”, J. Rational Mech.
Anal. 3 (1954) pp.247-270.

[10.53 Miranker, W.L., "Numerical Metheds of Boundary Layer
Type for Stiff Systems.of Differential Equations", Com-
puting 11 (1973) pp.221-234.

§ 11. BOUNDARY LAYER ELEMENTS

11.1 The Model Stiff Boundary Value Problem

The difficulties associated with stiffness for the numerical
solution of initial value problems are also present for boundary
value problems. In fact,the computational aspects of the latter
class of problems may be richer than those of the former (c f.
[11.7)  and [11.9]) ). The techniques of boundary layer analysis
allow us to take a brief look at some of these aspects and for-
a model problem, and so we are at anatural place in this course
for this small detour away from the initial value problem.

The model problem is

11.1) vu” +u’ =0, x€(0,1),
11.2) w(0) =0, u(l)=1.

Here u is a scalar, v is a parameter, considered small and the
prime denotes differentiation with respect to x.
The exact solution of the model problem is

1-exp(-x/v)
l-exp(-1/v)

11.3) u(x) =

exhibiting a boundary layer near x=0.

To discretize (11.1) we introduce a mesh increment, h,
Nh=1, N a prescribed integer and the following difference oper-
ators '

_ Sxh)-f(x)

f, (x)
11.4) fr(x) = f(x-h),

fo (%) == (f,45.).
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Then u (x) is a numerical approximation tou{x)} and is de-
termined as a solution of the following difference boundary
value problem

11.3) vuh- +uﬁ =0
xx x
h h
- 11.86) u (0)=0, u (1)=1.

This well known -and canonical numerical approach yudd>the

exact solution
k
1 (QV-h)
: "\ v+h , .
11.7)  u"(kk) - s, v A% k=0,1,...,N.

. N
1“(%&h
"\ 2v+h

As is well known éi? uh(x)=u(x). However, the limit is not taken

on uniformly in v. Indeed if v=h,
Wy =2 t1-27N )
u (h) = (1-e"*)(1-e"" )72,
and
;Eif)" [u(h)-u® (h)] =27 %2,
v=h

This lack of uniformity isa characterization of the stiff-
ness or ill conditioning of the boundary value problem.

11.2 Methods for Obtaining Uniform Convergence

A first idea for obtaining uniform convergence is due to
Ilin (c.f.[11.4)). We note that the differential equation,
vu__ +au =O,
xzx x .
has the particular solutlon, exp(—ax/v) Then in place of the
dlfference equation (11.5) take

11.8) A sy'u; + aug -0,

|3
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where the coefficient ¥ is determined by the con-

.. h L. . . . .
dition that L annihilates the particular solution inquestion,
i.e.,

Lhexp(-ax/v) = 0.

This gives

ah ah
11.9 = e—— Ccth — .
) Y 9 >
Notice that
11.10) lim 7f;v . lim y==|a¥ll.
h—0 v=0 » 2

In [11.4], the following theorem is proved.

Theorem 11.1: Let u({x) be a solution of the boundary value
problem

vu" +a(x)u’ =f(x), 0<v<1

u(0) =ug, u(l)=u,,

and let uh(x) satisfy the same boundary conditions and bea so-
lution of the following difference equation

Lhyh = a(;lh cth aﬂ;jh ui% +a(x)u; =f(x)

on the mesh {0,h,2h,...,Nh=1} . Let there exist positive constants
¢ and m such that

a(x)za,lla(xﬂlc2<m,Ilf(xﬂ162<m,luof,|u1l<m.

Then there exists a constant M =M(m,o) independent of v such
that :

lu (x)-u(x)] <Mh

at each point of the mesh.

Another technique for obtaining this. uniform convergence
is due to Abrahamson, Keller and Kreiss (c.f. [11.5)). They
produce the same result as that of Theorem 11.1 and moreover in
the case of a second order system.They use a device résembling
upstream differencing (c.f.[11.3]) and choose ¥ in (11.8) to
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be v+ch, i.e., they stretch the boundary layer. They show that
a best stretching is achieved for 7*=V+|a|h/20-Notice that y*
is a linear interpolant of the 7 given in (11.9) which uses the
limiting values, (11.10), as interpolatory data.

11,3 Finite Elements

The finite -element method may be used to produce uniformity
of convergence as well, provided that the right elements are
used. This approach has the advantage of suggesting a systematic °
procedure for stiff boundary value problems (c.f.[11.8]).

" . The flnlte element approach determines an - approximation
v(x) to u(x) where

11.11) v(x) =

A
)=
<

7 (x) + Bb(x).

¢ (x) is an element which is assoe1ated with each mesh point
]h, j=0, ,N and b(x) is aso called boundary layer element

11.12) b(x) =e°”/”,

Let (*,°) denote the inner product in [?(0,1). Then the
conditions for determining B and the-?}, j=0,...,N are

1
1 .
i) 0;(Vv”+v!’¢i)fvvl¢i -;( v?u¢£w¢i)dx; i=1,...,N-1,
0

0.

’ 4
+2Jr v'bdx,
0 0

ii) 0=(Vv"+v’,b)=Vv'b

11.13)

i1i) 0=70¢o (0)+B )
1

iv) L=yydy(1)+ Be ©

(11.13) (i) and (ii) form the statement that v is the weak so-
lution of - (l1.1) in the span of b and the ¢,, -i=1,... N-1.
(11.13) (iii) and (iv) assert that v obeys the boundary condi-
tions (11.2). '
Now we specify ¢.(x) to be the most primitive finite ele-
i
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ment ¢j (x)=¢(x-jh), j=0,...,N where

( X
-+l xe(0,1),

x
11.14) d(x) =4 —;- 1, xe(-1,0),
0, otherwise.
\

In this case (11.13) (i) and (ii) become respectively

Yi+t " 2V v
11.15) 0=hE} RSN INE L NS AL S
h? 2h
. h h h
T 9 +'7
~pp2 i & <€ ] j=1,...,N-1
h2
and
0=Ble “-e “+e "-e R cosh — j:: J
v =1

Now

¢=(BY,...,7y) and.f=(0,...,0,1)

be (N+2)-vectors and write (11.15), (11.16) and (11.13) (iii)
and (iv) in the form.

11.17) Sc = f

where S-is an (N+2)X(N+2) matrix. Let p=exp(-h/v). Then
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11.18) S =S (1+0(u?)),
where
0 --‘;-»«2“ -g- b W ]
1 t 0o o
V2(u-1)  v-h/2 - weh/2
i 0 v-h/2 % peh/2
11.19) So= vh2 w2

. -

v-h/2 - v+h/2

All missing entries in Sy are zero.
In the limit as v =0, the system Sc=f becomes

09:71 - Yo
R 0»=B+")’Q
11,20) ' »

0‘:7}+1 “Yi- 1
1 "‘"’YN
The solution of (11.20) is

11.21) ;s=ry]. =1, j=0,1,...,N.

This is the desired limiting form of the numerical solution as
an inspection of (11.3) shows.

11.4 A Numerical Experiment

A computation with Spgc = f was performed with the results
displayed in the following table.
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£ 3 5 7

11 6.9 3.3E* 2 3E"*
.1 | 2.9E°2 4 0E? 4 8E?

.01 | 5.1 E*% 8 9E* 1.1E°
.001 | 5.9E°¢ 1.3E°5 21E°

2
l°-norm of error

The numerical results displayed in this table show remark-
able accuracy for very few elements; (the analogue of a course
grid). They do reveal a disturbing feature. There is an im-
provement at first as N increases which is then followed by
degradation. An examination of Sy shows that the finite equa-
tions which generate the approximation are not of positive type.
Thus as N gets large we may expect some instability.It seems we
are not disappointed. '

11.5 Some Remarks

We conclude § 11 with several remarks.

Remark 11.1: The finite element procedure is a variant of a well
known technique of finding Galerkin approximations tosolutions
of problems with singularities. For those problems one adjoins
to the set of functions in terms of which the Galerkin approx-
imation is sought, special functions having the same singular
form as the solution.

Remark 11.2: The special elements needed to be adjoined in the
case of a singular perturbation are well known. In fact, the
body of literature dealing with these problems has the charac-
terization of the boundary layers as one of 1ts themes (c.f.
[11.1) and [11.2)). These elements are known even in the case
of systems of equations, nonlinear equations and equations in
more than one independent variable. Thus the numerical method
outlined here is applicable toall of these classes of problems.

Remark 11.3° The boundary layer element does not have compact
support which causes the total loss of sparseness in the stiff-
ness matrix, S. Nevertheless,as we have seen in §11.3, the ex-
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ponential decrease of the boundary layer -element gives us a
stiffness matrix which is sparse up to an error which is ex-
ponentially small.

Remark 11.4: A proof of the uniform convergence of the Galerkin
approximation, which includes boundary layer elements, to the
solution of the singular perturbation problem follows along
"familiar lines: 4

a) We choose a sequence of manifolds which contain the
right kind of functions to secure .a uniform approximation to
the solution.

' b) The results of the analytic theory of slngular pertur-
bations supply us with the functions needed for this uniform
approximation.

- ¢) The Galerkin approximation to the solution in each of
the manifolds in (a) being -itself the best approximation to the
solution in each of these manifolds respectively,will have the
property of uniform approximation,

Remr e H@SO i not of positive typé myst be dealt with,

he prOJectlon procedure giving the numerlcal re-
sults supplies us quite simply with amatrix S which is in fact
a discrete version of a matching matrix. The latter is a key
element in the analytic theory of singulatr perturbations and
is in general very difficult to comstruct.
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§ 12. EXPONENTIAL FITTING IN THE OSCILLATORY CASE

12.1 Failure of Previous Methods

The numerical methods which we have discussed thus farhave
used the fact that the rapid changes in the solution are tran-
sitory, although possibly recurrent on a time scale which is
long compared to that of the rapid changes.When the stiff sys-
tem has solutions of a highly oscillatory character,themethods
which we have looked at do not work at all. For example, the
key idea behind the introduction of notions of “absolute sta-
bility was based on the existence of slowly varying stages in
the development of the solution. In this section we begin our
considerations of this oscillatory problem with a discussion
of a method which employs a form of exponential fitting based
on a process called aliasing (c.£.012.3]). ‘

12.2 Aliasing

Let f(t) be periodic with period 27. For a fixed integer
N>0, let the following values of f(t) be given: ’

(L
12.1) Fl;), ty = 2N>2w, j=0,1,...,9N.

We will call these points tj; the data points.
In terms of these values, the discrete Fourier series,



89 -

Cy(t), of f(t) is

N
. A A
12.2)  Gy(t) =72 2. (A cosrt+B_ sinrt) + ;" cos Nt.

re=

The coefficients of this series are

9N- 1
:.1%. ]‘(_,—‘ f(t;) cosrt,
12.3) 2N- 1

If f(t) is highly oscillatory, then for a good represen-
tation of f(t) by C (t) we require N to be quite large.In fact
we would need 2N values of f{t) (¢ f. (12.1)) and. 2N terms in
the series (12.2), a large number of values and terms respec-
tively.

Now suppose that f(t) has a special form so that its fre-
quencies fall into clusters. In particular suppose that

p
12.4) f(t) =h(t)+ 2, c, cosR t+d sinR t.

n

We suppose that h(t) is a smooth function. That 1is

0

- EE: (a! cosrt+b! sinrt)
rd r r

12.5) h(t) =

and that there exists an integer L > 0 such that the quantities
Ia;i and lb:]'are negligible for r >L. Furthermore we suppose
that the frequencies R} >Rp~1 >...>R;>L are known (and are
large).

The objective is to estimate the coefficients ¢, and d,
m=1,...,p and the coefficients a’ and b' r«<1,...,L. This may
be efficiently accomplished through allaslng

Note that at each of the data points,the functions cos H t
and sin R t can be replaced by cos r t and sin rmtJrespectlve

12
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ly, where R, >N>r . This is accomplished by use of the fol-
lowing identities:

cos[(?q)N+r]tj = cos rtj
cos[(2q+1)N+r]tj =cos(N—r)tj
sin[(?q)N+r]tj =sin re;

sin[(2q+1)N+r]'tj =-sin(N-r)t,.

One may view the first of these identities, for example, as the
statement that cos[(2g9)N+r]t takes on the same values as cos rt
at the data points but oscillates faster in between. Thus if
we use a coarse mesh composed of 2N+1 mesh points where N <R,,
each of the high frequencies R will be replaceable by a har-
monic with the lower frequency r, <N.

The relation between the Fourier coefficients (a..b ) of
f(t) and the coefficients'(Ar;Br) of its finite Fourier series
(c £.(12.2)) 1is

®
A =a_+ Z: (a2mN+r "a2mN-r)

mn=1

12.6)

©
Br = br * =1 (meN+r B bQMN-r)'-

m

Thus the replacement of higher frequencies by lower ones
will not confuse components if N is chosen in such a way -that
each of the frequencies w=0,1,2,...,L-1, R,,R,,....R occurs
in a separate sum in the right member of (12.6). Clearly N2L+p
but usually N is smaller than H; making the process reasonably
efficient.

12.3 An Example of Aliasing

These ideas are clearly illustrated with the following ex-
ample. Suppose that f(t) is the sum of a slowly varying func-
tion plus three harmonics of frequencies 177, 589 and 1000,
respectively. Using N=52 or 105 data points we have
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cos 1000 t. =cos 40 t.

J j
sin 1000 t; =-sin 40 t;
cos 589 t; =cos 35 t;
sin 589 t; =-sin 35 t;
cos 177 t; =cos 31 t

sin 177 t. =-sin 31 t.
J J

where tj=j7T/52, j=0.1,...,104.

Thus if we find the discrete Fourier series for f(t) at
these data points, viz.,

4o
2

51
2 : Ass
+ — (A, cos re; +B_sin rtj) + 5 cos 52 tis

t.) =
fe)
we can say that at the data points

cosrt +B_ sinrt)
r r

F(2) =2+ 2_ (A

r=1
+ Agy cos 177 t- By, sin177 ¢
+ A35003589t— B,ssin 589t
+ Ao cos 1000 t- B,o sin 1000 ¢

within an error depending on the size of the Fourier coeffi-
cients of the slowly varying part of f(t). For a precise error
analysis of this procedure we refer to [12.4].

12.4 Application to Highly Oscillatory Systems

We begin by describing themethod of Certaine (c.f. [12.3]
and [12.4]) which is a simpler variant of that of Jain treated
in § 5.

The system of differential equations iswritten in the form

12.7) y'(x)=-Dy(x) +g(y(x),x).

Here y and g are m-vectorsand D isan m X m constant

matrix with at least one large eigenvalue. We integrate (12.7)
to obtain
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Tntt
. =~Dh Dfx- : .
12.8) y(xm*1)=e Yn +j; e (= xn+1)g(y:x)dx: h=xn+i°x‘n"

n

Certaine’s method consists - of the following two steps.

Ai) Approximate g(y,x) by an interpdlation polynomial,
g, (x), of degree k at the points %, ,,%, p4gs---,%,- Replace

g in (12.8) by g, and use theresulting expression for y(x,,.4)
as a predictor.

ii) Using the predicted value of y(x,,,) repeat step (i)
using the points %, ,,s,.+.,%,,; to determine the correction.

Thus Certaine’s method is given by two utilizations of
the following expression

Xntt
-Dh -Dx Dx
12.9) Yneg =€ Y te nHj: e g (x)dx.

n

We now make several observations about Certaine’s method.

Remark 12.1: The integral in (12.9) may be'evaluated explicit-

ly: If the exponential matrix e’? is difficult toevaluate one

-D. . . : Dox
may take D=D,+D, where e ' is easy to evaluate and e 2% s

adjoined to g..

Remark 12.2: If g is a polynomial of order less than k+I the
method is exact. Thus the method is A-stable:

In the oscillating case the polynomial g, is replaced by
a trigonometric polynomial. In this case as well,the integral
in (12.9) may be explicitly evaluated. However, we will have
an inefficient procedure unless we use aliasing. That is we
must know the higher frequencies in the problem (i.e., the large
imaginary eigenvalues of D) and then we mustalias thesehigher
frequencies so that g, is & trigonometric polynomial of low
degree.

A eriticism of this method arises im the case of a non-
linear system. For in such a system, even though the frequencies
are known to start with, we may find the introduction of sum
and difference frequencies into the solution as it develops.
Of course the determination of N depending on L and the Rj,
j=1,...,p requires a computation also.
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-§ 13. A TWO-TIME METHOD FOR THE OSCILLATORY PROBLEM

13.1 The Model Problem

We continue our study of the highly oscillatory problem
through use of the two time. technique of singular perturbation
theory. To illustrate this approach we consider the following
model problem: : :

d .
e_d_".z (Ao+eh,)u , te (0,71,
t
13.1)
u(0) =uo ,

where u is an n-vector and Ay and 4,, are n Xn matrices.
In terms of the matrizant ¥(t,e), we may write the solu-
tion of the model problem. as ‘

u = lF(t,fi:)l,l(),
13.2) . )
Y(t,e) =expl(Ag+eA,)t/el.

The numerical evaluation of this matrix at t=T, is difficult
when € is near zero.
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If we introduce a new time scale

13.3) T=t/¢,
the solution becomes

’ AOT+A1t
e u

13.4) u= o, 0<7<T/e.

This indicates that the solution developes on two different
time scales, t called the slow timeand 7 called the fast time.
1f Ao and A; commute, (13.4) becomes

Agr A4t
eoel

13.5) u= ug-
In this case the dependence on the two scales separates and in
principle we could determine each of the factors in (13.5) se-
parately.

However in general A, and A; don’t commute andmoreover it
is not necessarily the case that the development of the solu-
tion on the 7-scale is even useful to approximate numerically.

13.2 Numerical Solution Concept

Consider the example corrésponding to

0 -1 10

1 0 0 -1
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With these matrices the motion described by (13.1) corresponds
to a slowly damped (t-scale) extremely rapid (7-scale) harmonic
motion. The solution, schematized in figure 13.1 for the case
n=2, is practically a space filling curve.

As €~ 0 the solution converges (in an approximate sense)
to the cone obtained by rotating the curve |lugiie”? about the
t-axis. Thus the meaningfulness of describing a trajectory by
a set of its values on the points of a mesh is lost (i.e. is
an 11l conditioned process). ‘

A variety of alternate rumerical solution concepts may be
formulated. Consider the following one:

Solution concept: Given €' >0 and >0, we say that U(t) is-an
(e',8) (numerical) approximation tou(t) if there exists 7 with
| 7] €8 such that

lUct)-u(ter)| <e’.
Of course =0 for the usual concept of (numerical) approx-

imation. In figure 13.2 an example "of this approximation . is
given.

N

A /u(w)
H

&V

u(t)

4 Figure 13.2

In terms of the model problem, we may accept by means of
this solution concept a numerical approximation to the slow time
part of the solution as a numerical approximation to the solu-
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tion itself. The problemis to extract this part out of the whole
solution and to do this we employ the method of two times. Of
course nothing prevents us from computing the fast time part,
as we shall gee, locally. That is to remove the ill-condition-
ing of the highly oscillatory problem we must abandon some as-
pect of the solution and in particular we will abandon the de-
termination of its precise (fast-time) phase.

13.3 The two time expansion

We seek approximations to the solution of (13.1) in the
form of a general two-time expansion

o€

13.6) u=Zur(t,'r)sr.

r=0

This will be a useful series for purposes of approximation, if
we have

13.7) u (t,t/e)e” =o(e 1), ret.92,...,

as €0, uniformly for 0€t<T. With (13.7) valid we say that

(13.6) is an asymptotic expansion with asymptotic scale e . A
sufficient condition for (13.7) is that

13.8) u (t,7) =0(T)

as 7w for r=1,2,...

The expansion resulting from this prescription of the form
(13.6)-(13.8) of the solution will bederived below.It is some-
times possible to obtair moreinformation from the expansion by
placing a stronger condition on the coefficients than (13.8).
In particular we will determine conditions on A and A, so that
the requirement

13.9) u, (t,7) = o(re®”)

as 7w for r=1,2,..., can beused to obtain a valid expansion.

If Ag is an oscillatory matrix (all eigenvalues have zero
real part), then conditions (13.8) and (13.9) are equivalent.
If Ao is a stable matrix (all eigenvalues have nkgative real
parts), the condition (13.9) is more restrictive than (13.8).
In the stable case it may not be possible toobtain an expansion
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of the solution of (13.1) inthe form (13.6) whose coefficients
satisfy either (13.8) or (13.9). However, we will describe an-
other restriction on the problem which when used with (13.9)
guarantees that the solution of (13.1) can be approximately
solved in the form (13.6).This approximation technique proceeds
via the twotime approach. This result is valid when the eigen-
-values of Ay, lie in the stable half plane; therefore, it con-
tains both the stable and oscillatory ¢ases.In the stable case,
the expansion found by this method reduces to the one .which
would be obtained by the method of matched asymptotic expan-
sions. In the oscillatory case, -this result reduces to an ex-
pansion equlvalent to the one ‘obtained by the Bogoliubov method
of averaging.

13.4 Formal Expansion Procedure

We consider the initial value problem for the system (13. 1)
and we write the initial conditions in the form

22
13.10) u(O) ;Zg a, e

To simplify computation let
"AQ’T'
13.11) ‘ v(t, 7) =e uft,r).

Since v is considered as a function of the two variables 7 and.
t=eT,

dv(et,T) L. du(t,T) . du(t,T)

1
13.12) dt ot or

Then (13.1) becomes the following equation for wv:

o«

-
13.13) sﬁ-wa-:—:ss(rr)v, v(0)=§ars:r-
where
13.14) B(r) =e 40T a, 07

We seek a solution in the form (13.6) which becomes

13



13.15) v = 2:; vr(t,T)er
r=

subject to the condition (13.9) on the u_.. In terms of the v _,
the latter becomes

13.16) v (t,7)=0(T) as T=O®, r=0,1,..

Substituting (13.15) into (13.13) and equating coefficients of
the like powers of € gives

v du

r r-1

= B(T)vr-i - 5

13.17) ; vr(0,0)=ar, r=0,1,...

Here v.-,=0.
The problem (13.17) is underdetermined.The equation (13.17)
for v_ can be integrated to give

T dv__,(t,0)
13.18) vr(t,T)=?1'r(t) +f [E(or)vr_l (t,o) e 40-,
0
r=0,1, ,
where
13.19) v (0) =a,.

Except for (13.19), 5r(t) is arbitrary.Differentiating (13.18)
with respect to t gives

T

du v v, _y 3%y -1
13.20) L -—L [B_(cr) . :Ido.
ot ot ot ¢2

Combining this with (13.18) gives

T T

dv

s ~ -1

13.21) v, (£,7)=%, (£)+7, (t)f B(o)do-T — f R, (t,0)ds
0 0

where



’ v, 4 (t,0") 32vr,1(t,0')
R (t,0)=- B(o) — — - - ]do"
0 t 9t 2

‘ 7 , avrnz(t,cr')
+B(o) [B(O’ )vr_-x(t,d') —-———————a;w—-]do'.
o .

(13.21) and (13.22) hold for r=0,1,..., where V.,=R,=0. Let us
impose the growth condition (13.16) in (13.21). To do this di-
vide (13.21) by 7 and take the limit as 7—®, This results in
the following condition for ¥ _.,.

da’r"l 1
13.23) ={ lim — B(cr)do) . +lzm<—-f _1(t,0‘)dc),
dt \N7-o T . 00
0 r=014... .
When these limits exist, (13.23) along with (13.19) determine
v, r=0,1,
i Th1s approach dependes cr1t1cally on the existence of the

limits in (13.23). The development will be simplified by using
the notation

13.22)

13.24) F-tinl f(x)dx.

o T J,

- If fexists we will call it the average of f. In terms of this
notation (13.23) becomes

ay.

13.25) =BY_ +R (t), ¥ (0)=a

dt

provided the averages exist.

13.'5. Comments on the existence of the average and estimates
of the remainder

In the case that Ag is an oscillatory matrix, B is an al-
most periodic_function (cf  (13.14)) and so the existence of
the average, B is _assured. The existence of Bl is implied by
this existence of B. These statements are proved in [13.1).The
existence of these two averages provides us with the approx-
imation vp+€v,; to v. This approximation is adequate for ourcom-
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putational -purposes. In [13.2], Hoppensteadt and Miranker de-
velope a more complete treatment of (13.1) by the two time me-
thod in the general case where the eigenvalues of Ao may be
anywhere in the complex plane andwhere nonlinear forcing terms
are adjoined to the system as well. However we restrict our
descriptions tqQ the setting of the earlier paper of these two
authors since that description of the results,being less tech-
nical, is easier to present asis the ensuing numerical develop-
ment.

Under the hypotheses that the matrix Ap; has simple ele-
mentary divisors and in the case that the eigenvalues A,
i=1,...,n of Ay are such that Re A; €0, we find the followingthe
results in that earlier paper.

Theorem 13.1: B exists if and only if the elementS'agj of A,
vanish whenever Re(AjnAi) > 0.

Theorem 13.2: 51 exists whenever B exists.
Theorem 13.3:
max lv(aT,T)~vo(8T)~8v1(€T,T)|\Sconst g2,
0<7<T /¢

13. 6 The Numerical algorithm

We take the leading term, uo(t,T) of the expansion (13.6)
as approximation to the solution of the initial value problem
(13.1) with the initial condition given by (13.10).

Then from (13.11) and (13.18)
13.26) uo (t,7) = ®(7)Vo (t).
®(7) is the fundamental matrix given by

13.27) ®_ =A4,0, (0) =1,

while from (13.25)

13.28) =B%,, ¥5(0)=ao.
dt
From (13.14)
1 T
13.29) B=1lin — | @ '(0)A, &(o)do.
T=© T
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We describe the algorithm for replacing @y the approxima-
tion to u(0) by U(h) the approximation to u(h) (in the sense
of the solution concept in section 13.2 above). The algorithm
is to be repeated approximating u(t) at u(2h),...,u(nh) suc-
cessively.

Algorithnm

i) Selve (13.27) on a mesh of increment k in the 7 scale
by some self starting numerical method, obtaining the sequence

@(jk), j=0,...,N.
i1) Using the values ®(jk) obtained in (i), approximate B

by truncating the limit of integration 7 and replacing the in-
tegral in (13.29) by a quadrature formula, say

N

L 2 ¢, e (k) A a(ik).
N j=0

B =

The integer N is determined by anumerical criterion which
assures that the elements of the matrix B are calculated to some
desired accuracy.

iii) With B (approximately) determined in ii),solve (13.28)
for ¥o(h) by some self starting numerical method.

iv) Compute uo(h,Nk)=3(Nk)?o(h) and take this as the ap-
proximation to u(h).

Refinement: The method may be refined by adding an approxima-
tion of evi(h,h/€) to Vo(h) prior to multiplication by &(Nk)
(step (iv)). This approximation  in turn is determined from a
numerical solution of the equations defining v,{t.7); viz.

T

vi(t,7)=TV.(t) »Emf B(o )do
0

13.30) i;: = BY, +R,(t)
Ri(t,a)=[(§2~B(O‘)1—3.)o—-‘f B(g’)da’.§+B(a)f B(o")dcr':!?fo(t)
0 0

In figure 13.3 we schematize the computation. Of course
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in practice € will be extremely small so that unlike the sche-
matic an enormous number of oscillations of ® will occur in the
t interval [0,h}.Notice how far the computed answer ®(Nk)¥o(h)
may be from the usual approximation to the solution, uo (h,h/e).

N

KCAC]
“a(b:h/e)
,/jHHHH; —15 ¢
— @ (t/e)
(k) \
P(NR) Ty (1)

Figure 13.3

The fundamental matrix &(7) is composed of modes correspon-
ding to the eigenvalues of A,. Since the eigenvalues of A

lie in the closed left half plan, the profile for (a component) of
& will after some moderate number of cycles settle down to an
(almost) periodic function. Thus the set of mesh points
{jki=0,...,N} may be expected to extend over just these cy-
cles (approximately).

13.7 Numerical Results

Tn this section we tabulate the results of calculations
with three sample problems, P,, i=1,2,3. P, corresponds to a
damped case (4o has real eigenvalues), P, to a purely oscilla-
tory Ao and P; to a mixed case.The numerical methods used were
chosen to be the most elementary (e.g. Euler’s method for dif-
ferential equations and Simpson’s rule for integrals) so that
the results are accurate only to a few percent.Moreover €/h=,1
or .2 so that the examples are not particularly stiff,.



Problem P, (damped case)

0 0]
0 -1

o |

t

0
.05
.10
.15
.20
.25

Problem P,

.01
.02
.03
.04
.05

1.00

. 953

TABLES
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. 908

. 865

. 824 .

. 785

(oscillatory case)

’

Problem P; (mixed case)

.05
.10
.15
.20
.25

0 0

S O O

L S SR XN O N

-1
0
0

.05
11
.17
.23
.29

0 0
0 0
0 -1
1 0

.05
.11
.16
.22
.28

L N e N

e e e e e N

A =

0.5
.49
.49
.48
48
47

.06
.12
.18
.24
.31

5
0
5
0
5

L N N Y

I
{ i1
S N

L T O T

.04
.09
.14
.19
.24

b ba kA b b ks

0.5
495
. 490
. 485
. 481
. 476

(e TN SC N
O RO

[ S O N e

Ao O O

.05
.10
.17
.22
.28

ST SO

SO TSTOD

e =.01
h=.05
k=.05
®(kN)U,
1.00 1,
. 953 0.
. 906 0.
. 862 0.
. 820 0.
. 780 0.
e =,001
h=.01
k=.05
B(kN)i,
0.5 0.
. 325
.184
. 007
-. 167
-.327
e =.,01
h=.05
k=.05
B(kN)%,
1.0 1.
-1.45
. 534 -1
.997 1.
1,72

.846 -1,

OO OO

5

. 605
. 669
.687
. 660
. 589

. 327
.46

31

. 149

60
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§ 14. A METHOD OF AVERAGING

14.1 Stable functionals

Consider the following model problem
14.1) %+ X%z =A%sin t,
and the follo&ing family of solutions

sén t
skn t

1-1/X*?

14.2) x(t) =a sinAt +

For A large, this solution family consists of a high frequency
carrier wave, @ s nAt,modulated by a-slow wave,(sin At)/(1-1/X%).
The specification of the value at a point of such a function ig
an ill-conditioned problem.

We have seen that the linear multistep class of methods
is highly desirable. for numerical analysis since these methodsaréeagy
to calculate with and easy to analyze. However these methods
consist of a linear combination of unstable functionals of the
solution of (14.1), namely values and values of derivatives at
points. In this section we will show how to rgplace these uns-
table functionals by stable ones, thereby producing a class of
linear multistep methods suitahle for the stiff problem.

We will not characterize the classes of functionals which"
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are stable in an abstract way. Rather we select two special
functionals which are . an averaging functional and an appropriate
evaluation functional which ought to be stable in the sense
discussed. We construct the numerical methods out of these two
functionals.

14.2 The problem treated

We develop our method in the context of the problem,

¥ +X%x = f(x,t), telo, T,
14.3)
x(0) = x4,

where x and f are scalars.

The solution of this problem will be required to exist on
the larger interval I=[-7,T] where the quantity 7> 0 will be
specified in (14.9). Thus, we assume that f(x,t) is continuous
in t, tel and Lipschitz continuous in x for all such t, with
Lipschitz constant L. In particular f(x,t) is uniformly bound-
ed for .tel and x restricted to any compact real set including
in particular the set of values taken on by the solutions x(t)
for tel.. ' :

Ay first we restrict our attention to the linear problem
in which f(x,t)=f(t). Then in section 14.9 we make some comments
about the nonlinear case and the case of second order systems.

14,3 Choice of functionals

Let N> 0 be an integer,let h=T/N and let t;=ih, i20,t1,..
be the points of a mesh. We seek the functional y(t) of x at
the points of this mesh. Let z(t) be a -functional of x which
can be calculated at each mesh point.Then we seek to determine
Y, =¥(t,), in terms of y ., t=1,...,r and 2z _; =z(t  .),
i=0,1,...,s by means of the linear multistep formula

r $
14.4) ?;% ay.._; +;§% bizn~i ﬁO, n=0,1,...,N.
"The initial values y;, i=-1,...,-r are assumed to be fur-

nished by some independent means.

14
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In the case (14.3) of interest and A large we choose y(t)
to be

w0
14.5) y(t)=‘[ k(t-s)x(s)ds ,
-0
where
1 1, -A<Z<:0,
14.6) k(z) =+

0, otherwise.

Thus y(t) represents the average of x(t) over the interval

[t-4, ).

2
The functional z(t) is chosen to be [

+A2]x(t), i.e.,
dt?

f(t), which can be calculated at each mesh point. Thus with a
change in normalization (14.4) may be written as

r

S
_ 2
14.7) Y, —i; Ci¥pi th E) difni

14.4 Representers

We introduce the reproducing kernelvspace,9¥5ﬁ% which 1is
the Sobolev space W;[-w,m]'with the inner product

14.8) <f,g>= i('{‘)(ﬂf{g*(;)))

J=0\J

where

(f.g) =f f(t)g*(t)dt.

[os]

An asterisk is used todenote thecomplex conjugate through-
out. Since we are interested in solutions of (14.3) on the in-
terval

14.9) I=[-p7T]
we may identify both a solution 0f14.3 and f(t) appearing

in 14.3 with the unique functions of minimal norm in H with
which they agree on I, respectively. Of course on I, f is re-
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quired to have m-1 absolutely continuous derivatives and an
m-th derivative a.e. which is square integrable.
We use a carot to denote the Fourier transform, viz.

o]

1 iwt & N 1 ~lwt
14.10) f(t) = — | e “fw)dw, fw) =——1] e ~ f(t)dt.
| me Vor J_,,

Then the inner product in # may be written as

1 -~ PN 2
14.11) <f.g>=— | f(@)§*@)|P, (@) dw,
Wr?f_m
where
14.12) P (@)= (1-iw)".

The reproducing kernel in % is

. s ® Gilsmt)e

14.13) RtERt(S) = dew.
2
Yor e |pm0»)y

A second Hilbert space, é; is introduced as follows:
A A A ’
14.14) #r=¥ ={flfP, ed,}.

A
The inner product in % 1is

0
A A A A 2
14.15) <fe> -2 ff’g*IPm_l-w.
Nom .

(14.11) defines an isometric isomorphism between # and ¥ . The
symbol ~, will denote this isomorphism. Then from (14.11) we
see that the isomorphism between R, and its image in ¥ -is ex-
pressed by

~twt
e

14.16) R, ~ — o .
1P, )]



108

2

Then for the representer, 7, of +A?, we have
dt?
-1 wt
14.17) ntER;’H\‘?Rtm(uw%)\Q)__%___.Q__
iPmﬁw)}

For the representer k, of y(t) given by 14.5 and 14.6 we
have

k, =k (s) =% R,(s)du
t- A
t -iwu .
”'i: z du
coa 1P (@)]
14.18) ‘
1 et [1-J”"A]
EP
P (w)] '
- 1wt
- Yo k),
P (w)]

where E&w) is the Fourier transform of k(z) given in (14.6).
With these representors, the formula (14.7) leads us to
introduce the following linear functional g .

r S
14.19) g, =g, [ =<k, 25 ek, -k Lo dpm, x>

1A 1= 13
g, will be zero if x is the numerical solution. In general g,

is not zero and is the analogue of the local truncation error
for classical linear multistep schemes.

14.5 Local Error and Generalized Moment Conditions

g, is characterized in the following definition.
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Def. 14 1 Using (14.15) as a definition, we call the linear
functional, g, appearing there, the local truncation error of

the method (14.7).
To estimate the local truncation error we write

r s

' 2 : 12
14.20) | gn“ éHktn -Jg Cjktn-j - K2 JZ: d].T;zn_jHA
where as usual
-2 2
14.21) xl ] =< x,%x> and Hxl A =X, X0,

We will drop the subscript, A, since no confusion should
result.

Now using (14.15), (14.18) and (14.19), we find for the
‘right member. of (14.20) that

r s @ '
e 1 2 d
14.22) &, Z__,; ¢k, -k Z_; dm, 11 ......_.f |t ()] ‘” -
J 7 J J ‘yQTT o tpm(w)l
where
r . S
14.23)  t(w) =27 k(w) 2 N RS d el o,
Here
14.24) so =1 and sp=-c;, j=1,...,r.

Fxpanding t(w) formally in.a Taylor series with remainder

gives
p-1 .
14.25) t(w) = ZZ_% (iho) m + R,

where from (14.23) and (14.25) we obtain

1 +1 r
I 1 E(Zfi)Lk-i > jz*bks.
L7 o(1+1)! k=t\ k j=0 J
14.26) -
R S 1 SR

1=l S T ey i j
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and
P : ) }
R_ - (the) [ LD 3 s.(jf”'1e”"“’f,1- (j+1,)f’”e”"(“““’f;2>
P P! L(P+1) j=0 7
14.27)
S y . . s PR}
S 2 Fd e i prp-1) 2 j?-Qd.eL]a7:4}‘
j=0 J j=0 J
In (14.26) and (14.27) we have used
14.28) L=40/h.

That is in terms of the functional k of (14.5) and (14.6)
the interval, A, over which the average is taken is a multiple,
L, of the mesh increment h. In (14.25) the quantities w; 4 and
Wi 9 j=0,...,r and @i 3 and Wi 4o j=0,...,s are values of w
which arise from the calculation of the remainder in Taylor’s
theorem.

‘The quantities m; are characterized in the following de-
finition.
Definition 14.2: We call the my, 1=0,1,..., the (generalized)
moments (of the coefficients).Analogously m;=0, 1=0,1,... will
be called the (generalized) moment conditions.

Consider the following remark.

Remark 14.1: View the equations m;=0, 1=0,...,r-1 as r equa-
tions for the r unknowns $i j=1,...,r. The l-th row of the re-

sulting coefficients matrix which has as its j-th term

l
14.29) 1 Z:(lf%l)Lk-ijﬂ—bk,

(l+1)! k=1 \T

is a linear combination of the first l rows of the Vandermonde
matrix. Thus the system of r equations has a solution in this
case. Indeed by choosing the dj, j=0,...,s to be proportional

-2 . . : : . . .
to A, we obtain a solution for the S5 j=1,...,r which is
2

o(1) +OMN ).

From the form of t(w) given in (14.23) we may make the
following remark the assertion of which follows from a familiar
arguement which proceeds by breaking up the range of integra-
tion in (14.22) appropriately.
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Remark 14.2: If p is chosen less than mand the coefficients s.,
j=1,...,r and dj, j=0,...,s are chosen as solutions of the gen-
eralized moment equations m;=0, 1=0,1,...,p, we may obtain an
estimate of the local trumcation error of the following form.

P
14.30) e, =nax lg <o), p<n.
xeH

REZRRN
We collect these remarks into the following theorem.

Theorem 14.1. There exists a choice of coefficientssj, j=1;...,r
and d., j=0,...,s such that the local truncation error has a

bound” of the form (14.30). Moreover, this bound is uniform in
A for |Al'2X > 0.

14.6 Stability and Global Error Analyses

Y., n=0,1,... denotes the values obtained by the multistep
formula, (14.7) from the initial values y,, n=-r,...,-1. Let
Y., n=-r,-r+1,... denote the exact values of these functionals.
Let

14.31) e, =y, - Y, n=-r,-r+1,.

denote the cumulative error. For convenience, assume that the
initial functionals e =0, n=-r,-r+1,...,-1.
Subtract the following identity

T r

S S
= - ;2 + - Z: .- 12 . .
14.32) Y ,; ¢Y, vh ]go difpy t Yy - LY, o b ?0 df, ;.

from (14.7). We get

14.33) e, = ]Z; CiCn.i * By
Here
r S
= - + . . 2 . .
14.34) R N A PR

is the value of the linear functional, g, 6f (14.19) applied
to x, the exact solution of the initial value problem (14.3).
To solve (14.33) for e,, we use the polynomial S(z):
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r

14.35) S(z) = 2o s.27 0,

j=0 J

Since so=1, [z S(z"*)1 ! is an analytic function of =z in
a neighborhood of z=0. Then let its power series be given by
14.36) 282 ) = 2 ol

Now multiply (14.33) by oy and sumthe result overn from
r to N. The result is the solution of (14.33):

N
14.37) ey = 2 Oy 8, -

n=r
We use the following definition.

Definition 14.3 (Stability).If the sequence.{aj,,j=0,1,._..} is
bounded, then the method is said to be stable.
We recall the following definition.

Definitions 14.4: S(z) is said to obey the root condition if
all of its roots lie'in the closed unit disc while those of its
roots which lie on the boundary of that disc are simple.

With this definition wemay state the following lemmawhich
characterizes the stability of the method.

Lemma 14.1 T1f the polynomial S(z) obeys the root condition,
then the sequence {O:,j=0,1fﬁ.,} is bounded. i.e. the method

is stable. (cf. Lemma 8.2).
If this lemma :is applicable (14.37) gives

14.38) leNl*Scons} N max |1gnl1'l1x|1;

r<ng

where x is the exact solution of (14.3) ‘
Combining this with (14.30) gives the following theorem.

Theorem 14.2. If the choice of coefficients characterized in
Theorem 14.1 give rise to a stable method, then for the method
{(14.7) with those coefficients,

14
14.39) eyl l<oh™), p<nm,

uniformly in A for |Al'2As >0,
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14.7. Examples

We now consider some examples ofmethods of the type (14.7)
in which the coefficients are determined by the generalized
moment conditions. _

From 14.26 we have for 1=0,1 and 2, respectively,

r S
0 o = O s, - X2 D2 d
j=0 ‘ =0
r L r ] S
14.40) 1. ny = js, t— 2 s - K2 2 jd
j:o J 2 ]:0 J j=0 .
r LA 2 I 22 S S
2. mQE1 Z j’s. +L z: js. +£— SM j%d. - d..
9 i=0 J 2 j=0 J 6 j=0 J 2 j=0 J j=0 J

Consider the case

A, mo=m,=0.

For r=s=1, we get

Ccq = 1—72+-L£h2)\'2d0

d1 = 2 ‘<—%+1>do.
h2>\2L L

In the special case do=0, (14.41) becomes

14.41)

i
[N
1

C1

14.42) I
d1=

These coefficients (i.e. ¢.) obey 'the root condition if
and only 1if

14.43) L > 1.

In the special case do=d;, (14.41) becomes

15



‘ 2
ca=1 - L+1
14.44) 11
do=d1 = 1 1 -
R2A2 L+1

Under the restriction L 20, the root condition is equiva-
lent to

14.45) L >0,

for the coefficients (14.44). For r=s=2,

2 -2 2 »
¢y = 1 -1—-(3{ +-i-)c2 +I/\.2h2(d0—d1)

dy = —2— (1+¢,) -(1 +L)aq (1 ~3)d2.
LA2R2 L L

In the special case do=0, ¢,=c,, d.=d,, {1%.%) becomes

14.46)

cimc, =22
2L
14.47) A 111 v :
dy =d, 3 .
2A% h2L
In this case S(z)=22 _LQ—LB’ 2 -L2'L3 and this polynomial,S(z),

obeys the root condition for a set of values of L which in-
cludes all L >1.
In the special case ¢ =c,, dy=dy =0, (14.46) becomes

- 1 L
c1 Tz T 9 3+L
14.48) v
do = —1— 3
azp2 3+
Here S(z}:z'gw—i- L z AL . This polynomial obeys the

2 3+L 2 3+L
root condition for a set of values of L which includes all
L>0. :

In the special case ¢,=¢,, do=d;=d,, (14.46) becomes
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14.49) v

P ogaepz 14

In this case the root conditions is obeyed for L > 0. Now
we consider a case corresponding to three moment conditions:

’

B. Mo=m 1=m9=0‘

For r=s=1, we get

{ 2
Cq = 1 “L(—L -{-£——~2—-—.—
3 2 HZ)\'Q
14.50) VI do = ! 1~L+L’2/(—2—L'2%L St >
’ )\252 3 h<2)\-2
d, = ! [1+L+(2L«L‘2)/(-‘~2~L‘Q+L Y
| AZH? ) 3 B2x2

Notice that the root condition is obeyed for L large and
positive but is violated for hA small compared to L.

Remark 14.3: In all of these example and in the general case,
we see that the coefficients obtained .as solutions of the mo-
ment conditions depend on AX®. At first sight this seems to be
more restrictive than the case of the classical linear multi-
step formulas where the coefficients of the formula do not de-
pend on the coefficients of the differential equation. In fact
we see no such distinction. In the classical case the coeffi-
cients of the differential equation enter into the method when
it is used to approximate the differential equation e.g. when
Yn-; is replaced by f(y,.;.t,.;).It isessential after all that

the numerical method at some point be dependent on the equation
to be solved. In our case this dependence occurs at the outset
in the determination of coefficients and in the error analysis.
In the classical case it enters in the error.analysis and in
the use of the methods.

14.8. Illustrative computations

We now apply the six sets of methods labeled I,II,.... IV
in 14.6 respectively, to the sample problem
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Runs are made over the interval [0,TI'=[0,7]. In

116 -

% +A%x =XN%sin t

x(0) =0,

x'(0) =—%+

1

1-1/52

Me thod )\L 1 2 3 1 2 7
1 10 |. 273 .108 L 112 133 . 126 L1926
101,113 .00217 .0611 | .0283 .00683  .0083
10°|.112 .00209 .0611 | .0111 .000106 .00627
I 10 |.122 .133 .155 .196 L1927 L1928
10°1.00125 .0622 .177 L0241 .00926  .0136
10°1.00104 .0621  .177 .000118 .00627 .0125
111 {10 |.242 111 L0872 || . 136 . 126 .196
10%1.0032  .00422 .00317] .0294 . 00684  .00546
10°1.0034  .00419 .00313| .00023 .00112  .89E-6
1v 10 |.123 L1111 . 0938 | .126 . 126 . 1926
10%1.00627 .0144  .0244 | .0241 .00684  .00546
10%.00623 .0144  .0244 | .000133 .000179 .000264
\% 10 |. 144 . 152 .156 L 127 L1927 .128
10°1.0657 .094 .119 L0249 .0116 L0136
10%1.0657  .0939  .119 . 0063 . 00942  .0125
VI 10 |.758E4 .66E11 .124 .195E1 . 471E1 . 11E?2
10%1. 0447 0639  .244 L0246 . 00901 . 0253
1051.0447 .0639 .244 .00421  .00629  .0251
h .1 .01
el T,

Table |14, |
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table 14.1 we display the l,-norm of the cumulative er-

ror
In/h] qy
14.52) Hell'lf[h?—__%e'j} ,

for a set of various combinations of h=.1,.01, A =10,103,105
and L=1,2,3 and for each of the six methods cited.

To illustrate both the favorable and unfavorable effects
in our methods table 14.1 contains cases for which the methods
are designed to operate well along with cases to which corres-
pond poor or nonsensical results.

For. example although the cases corresponding to A=10 give
fair results,these cases are not stiff and we should not expect
good results. When h is decreased improvement should occur but
only for the stiff cases. The cases A =10% and h=.01 are not
stiff and improvement with decreasing h does not always occur
in these cases. Method VI is used in some unstable cases. Ex-
amining (14.27) we see that Bp is proportional to LP. Thus in
some cases as L increases we see an improvement due to improv-
ing the averaging (i.e. increasing 4), but ultimately a degra-
dation due to the L dependerice of RP. The stiff cases for mod-
erate L give extremely good results as we expect.

14.9 The non linear case and the case of systems

In [14.1] a discussion of the extensionof theresults des-
cribed in sections 14.1 -14.8 to the nonlinear case and to the
case of systems 1s given. We will give some highlights of that
discussion.

In the nonlin€ar case, f _, inthe multistep formula (14.7)

is replaced by f(y,.;.t,.;) since f ,~=f(x, _..t. . .) can not be-
computed as we proceed along the mesh. This results in a de-
gradation of the error estimate (14.39) to the following:

14.53) [Teyll < const[h® +Le gl
Here
14 .54) €4 =qu|h2dji|

J

16
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and
© .5 Y
ol
o

14.55) v =4£ e
2 ’ 2
o |2 (@)]

m

"Remark 14.4: The two terms inthe estimate (14.53) are not com-
parable in orders of h. The first termwhich corresponds to. the
local truncation error is small for h small. The second term
is the error by which a function may be approximated by its
average. We may expect the latter to be small if A is large.
(14.53) may be viewed as the statement that modulo the error
made in replacing a function by its average, the numerical me-

thod is globally A*.
In the systems case, the differential equations (14.3) is
replaced by the second order system

14.56) £+ A%x=Ff(x,t).

Here x and f are ¢-vectors and A is a g xq matrix. The coeffi-
cients ¢ {and sj) and dj of the numerical method are replaced
by 9 Xg matrices (denoted by the same symbols).Many such formal
replacements of the scalar development follow. For example the
first two moments become

no :(20 - h?5® Z d){,
]:
14.57)

(%0 L5 o)

(compare (14.27)), where Qq is the ¢-vector all of whose com-
ponents are unity. ‘

The error analysis proceeds similarly (using some of the
matricial arguments of §8 leading to an estimate of the global
error which is similar to the one described in Theorem 14.2) .

We conclude this summary of the systems case with the fol-
lowing two remarks.

Remark 14.5: Referring to Remark 14.3 and the dependence of the
coefficients of the numerical method on the coefficients of the
differential equation,we see from (14.57) the ,vay in which the
dependence appears in terms of the matrix A%, for the coef-
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ficients determined by generalized moment conditions.It is im-
portant to take note that the coefficients depend on the matrix
A? and not explicitly on eigenvalues of A®. Thus, if we know
that a system is stiff, with highly oscillatory components, we
may use the methods described here without having to calculate
the eigenvalues of A® which cause this stiffness.

‘Remark 14.6: In the usual systems case for the numerical treat-
ment of differential equations the methods frequently used are
the scalar methods with the scalar coefficients simply multi-
plied by IQ' Ve suspect that the methods developed here in the
scalar case would work in the same way with the simple addi-
tional requirement of replacing A or A" by A or A" respec-
tively. At present this remark is only a conjecture and wedefer
for a further study its verification.
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