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METRIC SUBSPACES OF L
by Patrice ASSOUAD (Orsay)
~and Michel DEZA (Paris 7)

Summary : It is well known that a normed space E is a normed subspace of L1
if and only if the metric on E is of negative type§ moreo?er the finite
dimensional normed subspaces of L1 have been extensively studied
(zonoids, zonotopes,...) .

It is not so simple to recognize the metric subspaces of L1 by means
of inequalities (negative type does not suffice) . Moreover a metric subspace

1 1

of L™ (and L™ itself) is always a metric subspace of a g-algebra endowed with

the symmetric difference metric (for some measure) ; thus the study of the

1 will have a marked combinatorial character

metric subspaces of L
(related to codes, designs,...) .

We will study here (%) with full proofs and some details the convex cone
of all metrics d on a given set X such that the space (X,d) embeds into L1
(paragraph 1) and the dual cone of all inequalities (with a given number of

arguments) which are valid for all metric subspaces of L1 (paragraph 2).

(x) The two paragraphs of this paper were written a year ago as chapters of
a book on metric spaces projected (and not achieved) by the two authors;

they are given here with only slight changes.
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Sommaire : Les sous espaces métriques de L1 ont jusqu'a présent moins
retenu 1'attention que les sous espaces normés de Ll; de fait il n'est pas
aussi simple de les reconnaitre au moyen d'inégalités (ainsi, que la
distance soit de type négatif suffit pour les espaces normés, mais ne
suffit plus pour les espaces métriques) .

Par ailleurs 1'étude des sous espaces métriques de L1 a un caractére
combinatoire assez prononcé (relié aux codes, aux plans d'expérience,...)

< . . . g 1
a cause du simple fait suivant : un sous espace métrique de L1

(et L
lui méme) est toujours un sous espace métrique d'une c-algébre munie de la
distance de la différence symétrique (mesurée par une certaine mesure
positive) .

Le présent article (x) étudie, avec des démonstrations détaillées,
le cone conVexe de tous les écarts d sur un ensemble donné X tels que 1'espace
(X,d) soit un sous espace métrique de L1 (paragraphe 1) et le cone dual de

toutes les inégalités (d& un nombre fixé d'arguments) qui sont vraies dans

tout sous espace métrique de L1 (paragraphe 2)

(x) Les deux paragraphes formant cet article ont &té &crits il y a un an
comme chapitres d'un livre sur les espaces métriques, livre projeté
(et maintenant abandonné) par les deux auteurs; 1'usage de la langue

anglaise provient aussi de ce livre .
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INTRODUCTION : The present paper is a study of the basic properties of the metric
1 . § ok

subspaces of L™ (§1) and of the inequalities they satisfy (§2) . Each paragraph

will have its own introduction and its own bibliography (let us recall that

they were written as chdbters of a projected and not achieved book) .

Let us give here nevertheless a list of the more important notions

to be introduced in §l and §2 (with their location):

in contrast with the metric subspaces of LZ, the (possible) representation

of a metric space as a metric subspace of L1 is generally not unique ; actually
it is always possible to represent a metric subspace of L1 as a family of subsets

(of a set T) endowed with the symmetric difference metric (see below p5) relative

to a nonnegative measure u . Such a representation will be called a realization
(p7) and the total mass of the measure u is the size (p7 ) of the realization ;
if moreover the measure u takes its values in %?N , then the realization is called
a realization at scalen (p22) . A realization at scale 1 is nothing else than
an isometric embedding into a hypercube (p4); it can be considered as an

incidence structure (p8) .

A semimetric d (see note p2) on a set X is said to be Ll—embeddab1e (p6)

if the space (X,d) is a subspace (in the extended sense of p5 ) of some space L1
The set of all Ll-embeddable semimetrics on the set X will be denoted P(X) (p8);
it is a convex cone ; its extremal rays are defined by the dichotomies (p10)

and it enjoys some finiteness property (p18) .

For |X] =m , the dual cone P'(X) is the cone of all inequalities valid in L1

of order m (pp19et28); a metric space is a metric subspace of L1 if and only

if it satisfies all inequalities valid in L1 . The more -important examples of
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these inequalities are the polygonal (or hypermetric) inequalities (p29 ), which
include the triangular inequality (p31), the pentagona] inequality (p32) and

the;negative type inequalities (p30); other examples could be find p46

(the polygonal inequalities were introduced by Deza 1960 and independently

rediscovered by Kelly 1967 ).

Let us recall to end that a metric subspace of a hypercube satisfies, beside

these inequalities, the condition of perimeter (a congruence condition, p23)




§1 THE CONVEX CONE OF ALL Ll-METRICS

The-purpose icf this paragraph is to introduce the following concepts : sub-
spaces of L1 » hypercubes, réa]ization, size, scale, and to give the most
general properties involving these notions. It will contain three ‘sections :

1.A will contain the notations and definitions about metric subspaces
of L1 (and thus 1is important in order to read the other parts of this survey);
it contains also the first properties of these spaces;
no definite reference is used for measure theory (we suggest, in french, the
chapters 1,2,3 of the book of Meyer [21 ] and, in english, Royden [24 1 or
Cohn [13 1); in fact a reader interested on]y.in finite combinatorics may
assume that each measure is discrete ;

1.B is a study of the convex cone of all semimetrics d (on a given,
possibly infinite, set X) such that (X,d) is a subspace of L1 4
the results will become far more easier if the set X is assumed to be finite;
the results in this sectionwhich can be useful in finite combinatorics are
1.26, 1.27, 1.28, 1.30, 1.33, 1.40 and 1.42, exc]ﬁding the results of finite-
ness; no definité reference is used for convex analysis (one can see, in
french, Bourbaki [10 ], in english, the three volumes of Choquet [12 1) ;

1.C contains further informations (antipodal extension, perimeter
condition,...) and include an important (even if easy) Lemma on the scale of
a finite, integer valued metric space.

The whole paragraph is due to the collaboration of the two authors, except

1.B which is due to P.Assouad alone .

1.A Metric subspaces ofVL1 and realizations :

Our problem will be to study the possibility of isometric embedding of
metric spaces into same basic metric spacess Which will be generally some

subspaces of a Lp-space. We have to recall some definitions; since they are



nqt really surprising, the best is to go now to the first results (1.11)
and to come back to the definitions only when needed. Let us define

LP(T, ®,v) (or LP(v) for short) :

(1.1) Let (T, ®) be a measurable_space (i.e. the pair of a set T and of a
g-algebra @ of subsets of T) and v a nonnegative measure on (T,) (see
1.2 below);such a triple (T,%v) (withv=> 0) will be called a measure
space . We fix pe [l,4w[ . Then LP(T,B,v) ds the vector space of all
measurable applications f : (T&) —»C such that JT]f(t)[pv(dt) <+
It is endowed with the seminorm :

fe LP(T,3, |1
A G

and thus with the following semimetric (*) :

= ‘ p 1/p
QRLGILEIC)

f,g —_ " f"g“
LP(v)

In fact it is more classical to denote by Lp(ISB,V) only the corresponding
normed space (or metric space) , which is obtained by identifying two measu-

rable functions fl’fz : (T,.3) —C when fy =f, almost everywhere.

(1.2) Let us precise that a nonnegative measure Vv on (T®) is for us

an application v :b —>[0,+~ ] satisfying v(@) = 0 and
v( iU A;) = T Vv(Ay) for each sequence (A;); ¢ n of disjoint elements of %
=0 1=0 E . . \

in other words it is a nonnegative g-additive measure, but not necessarily

finite or o-finite.

(1.3) For example, we will use frequently the following discrete measure space
(the réader only interested in finité combinatdrics may assume that no other
-measure is used) :

let 1 be a set of cardinality n (finite or infinite) and

Tet i —>u, be an application of I dinto [O,+~] 3

Tet us take @k=’{0,1}1 (or 21) the o-algebra of all subsets of I ; then



we define a nonnegative measure on (I.a) by setting u(A) = 2
. ieA
for each A e <A ; in this case u will be called a discrete measure

on I ; for each ie I , the number U will be called the weight_of
(1.3.1) fix. j e I and assume that one has My = 1 and u; = 0

for all i e I \{j} ; then the measure yu defined as above is called

the Dirac_mass_at_the_point__j and will be denoted 85 5 we will use

also the notation 1 for Gj(A) ¥

jeA
(1.3.2) assume that one has u; =1 for all ie I ; then the

measure u defined above is called the cardina]ity measure ; in other

words it is the measure u defined by u(A) = IA[ for all Ae & (i.e.
w(A) 1is the cardinality of ‘A if A is finite, u(A) = +o otherwhise)s
the measure space (I,ZI,I 1 will bevdenoted for short 1 .

The ‘Qp-spaces are a particular case of Lp-spaces 3

(1.4) (the spaces z? R i?n) and £P ) e

Let I be a set of cardinality n (finite or -infinite) ; then LP(I) is
usually denoted.Qp(I) (or.Lp(n) if we insist only on the cardinality of
I) 3 if n 1is the cardinality of the set of all integers, the space

2°(n) will be simply denoted 2P .

Indeed , we are more interested in the spaces Ll(u) (i.e. in the
case p=1) . The next examples of our list will be clearely subspaces of

some space Lp(ﬂ) 5 we begin by two discrete examples :

(1.8) (the regular grill Pﬁ of dimension n and with k) : let us

take ke N U {+~} and I a set of cardinality n (finite or infinite);

the regular grill P" is the set xe {O,...,k}I ¥ [xil < too
iel
(or the set x € ZI z ]Xi] < 4o in the case k = +w )
iel

endowed with the following metric :



d(x,y) = 'ZI Ixi—yil (a metric with infinite values on 7! ).
€

i
Therefore it has also the Fo11owing equivalent definitions (for n finite):

n
k

is the cartesian product of n pathes

- it is the set of vertices of the graph P  with the pathmetric

n
k

of length k ( see also below 1.18) ;

(or geodesic metric) ; the graph P

- it is also the metric subspace of all elements of Q%n) having
coordinates in {0,...,k} .
The next example is more important :

Definition 1.6 (the hypercube_of dimension_n_at_scale_ n_ , denoted %-Kg) :

- - o —— " o — - - - - - = ——

let us take n ejo,+w [ and a set @ of cardinality n (finite or infinite);
the hypercube of dimension n at scale n is the set 2(9) of all finite
subsets of Q@ endowed with the metric defined as follows :

d(A,B) = % |A A B| for all finite A,BCQ

sion_n and denoted Kg .

Therefore Kg has also the following equivalent definitions (for n finite).
- it is the set of all binary words of Tength n with the Hamming's
metric (as used in coding theory) ;
- it is the set of vertices of a unit hypercube of R" , endowed
with the path metric ;
- the structure of graph mentionned above is also the cartesian
product of n graphs K2 and thus it will justify the notation ;
- it is also exactly the regular grill P? (but the particular

importance of Kg among regular grills will be shown in Proposition 1.11).

(1.7) One shows that %. Kg ) s a metric subspace of a space L' by using



the following observation on symmetric difference :

Another important metric subspace of L1 (in fact a semimetric space)

is the following continuous analog of Kg :

Definition 1.8 (the space K(Q.,@,u) or shortly K((gu) , taken from[4 ])

Let (Q.%u) be a measure space (u >0 , see 1.2) ;3 then K (G,u) is
the set {Ae @] u(A) < += } endowed with the following semimetric :
d(A,B) = u(A A B) for all A,Be (x having finite measure

(Naturally %‘ Kg is only a special case of K{@,u)).

Our notations concerning embeddings will be taken from [4 ]

Definition 1.9 Let X, Y be two sets and let & be an application from

Y xY into R (we will call such a pair (Y,§) a space , supported by Y ).
Let f be an application (not necessarily iﬁjective) of X into Y ;

then we define the inverse_image of 8§ by f (denoted & o f ) by setting :
§ o f (X,x') = 8(f(x),f(x')) for all x,x' € X .

Let d be an application from X X X 1into R ; the space (X,d) is

f:X —> Y such that d = § o f ; in this case, we will say that f

is an (isometric) embedding of (X,d) into (Y,8) 5 we will say

equivalently (even if_ _f_ _is not_injective) that the space (X.d) is

If X dis a subset of Y and f 1is the natural injection of X into Y ,

In fact we are mainly interested in the subspaces of the spaces Ll(u) s

Pz s -% Kg and K(@,u) described above ; thus we will specify the nota-

tions about embeddings into these spaces :



(1.10) Let d be a semimetric on a set X ; let us take pe€e [1l,4[ and
ne J0,+» [
(1.10.1) the space (X,d) .(or the semimetric d) is said to be LP-embed-

dable if there is a measure space (T,3,v) (with v > 0) such that (X,d)

is a subspace (in the sense of 1.9) of the space Lp(T,ig,v) 3
(1.10.2) the space (X,d) fis said to be h-embeddable at_scale is

there is an integer or (in the infinite case) a cardinal n such that (X,d)
is a subspace (in the sense of 1.9) of the space %f Kg 5
for n =1, we will say that (X,d) 1is h-embeddable (h is the first letter
of "hypercube" and of "Hamming").

We turn now to consider only subspaces of L1 5 we have observed that
K(2,@,u) dis a subspace of a space L1 (precisely of Ll(Q,agn ) and that
Kg is a subspace of a regular grill (precisely it is p?); we will now see that
the converse holds :

Proposition 1.11 : Every space Ll(T,‘B,\)) is a subspace of some space

- n
K(@,u) . Every regular grill Py is a subspace of some hypercube.

proof : (1.11.1) Let (T.3,v) be a measure space and consider Q=T xR,
@-= 95@5(/ sy H =V ®. .>\ where ® is the o-algebra of all Borel subsets
of R and A is the Lebesgue measure on R ; for each f € Ll(T,‘E,,v) s we
set
E(f) = {(t,v) €T xR | v>f(t)} (the epigraph of f) ;

now we see that the application f ——E(f) A E (0) is an (isometric)
embedding of Ll(T,‘SB,v) into K(al,ﬁ) .

(1.12.1) We take for example Kk finite ; the proof is the same, except tha
we take for each x’e‘{O,...,k}I (where I 1is a set of cardinality n):

E(x) = {(i,n) e I x {1,...,k} | n> x1.} :



thus we see that (for k finite) the regular grill PE embeds into

the hypercube Kg with m = n(k-1) ;
obviously the same is true for Pg .
The above observation (1.11.1) can be find for example in Oxtoby [23 ]
p.44 and is surely much older (Nikodym ?) ; the idea to use it in studying
metric subspaces of L1 comes from [4 ]. |

We will see that the good way to embed an Ll-embeddab1e metric space
1

in L is to embed it in space K(@u) 3

thus it is important to have a precise terminology about embeddings int K(&.u):

Definition 1.12 : Let (X,d) be an Ll-embeddab1é semimetric space ; then

of (X,d) into_(Q,@.,u) (n=>0). The size of this realization f is

- -

(1.13) More explicitely a realization_ _f__of_ _(X,d)_ _into_a measure_ space
(@,@,p)_ _(p=>0) is the following :
an application f : x — A, from X into {Ae @] u(A) < += } which

satisfies : d(x,x') = u(A, A AX.) for all x,x' € X ;3 in this setting it is

realization f .

Embedding into -% Kg is only a special (but important) case :

_Definition 1.14 : Let (X,d) be a semimetric space which is h-embeddable

n
2

a h-realization_of__(X,d) at_scale n_ , shortly a h-realization if n=1 ;

at scale n ; then an embedding f of (X,d) into %—K will be called,

- - ——————



oreover it will be called a h-realization into © , in order to precise

that the space %— Kg is supportéd by the set . The size of this

h-realization f is (according to 1.12) the number o(f) = %—n if n s

- finite, o(f) = 4+~ otherwise.

(1.15) More explicitely a h-realization _f__of (X,d) _at_scale n__into @_
is the following :

an application f : x — AX from X into the set of all finite subsets
of a given set Q (of cardinality n) which satisfies :

n d(x,x") = |A A Al for all x,x'e X 3

according to 1.13 , we define the corresponding incidence structure

A = {(x,w) e XxQ | we A} and the corresponding blocks

AUJ

{xe X | (x,w) e A} for each we Q ;

we note that the elements of X are sometimes called
treatements (resp. points) and the elements of & itself blocks (resp. lines);
this terminology comes frum designs of experiment in statistics (resp. incidence

structures in geometry) ; see Dembowski [14].

(1.16) In some cases it will be more convenient to describe a h-reali-
zation f into Q@ (when X and @ are finite) by its incidence structure
given in the following way :

the incidence structure is written as a X x Q-matrix a (i.e. the Tines
afe indexed by X and the rows are indexed by @ ) with only binary eﬁtries

(the entry a is 1 if (x,w) € A and is 0 otherwise) ;

We need now some notations for the set of all embeddable semimetrics :

Definition 1.17  The set of all L!-embeddab1e (resp. of all h-embeddable)

semimetrics on a given set X will be denoted P(X) (resp. h-P(X)).



Let us recall the concept of direct sum:.

Definition 1.18 : Let (X15dq) “and. (Xz,dz)' be ‘two spaces (in the sense

of 1.9).

The direct sum of (X;.d;) and (X,»d,) 1is the pair  (X,d) denoted
(xl_,o_il) ® (Xy.d,) and defined as follows :
X = Xl'x X2 and d  {5 the,fO]lowing-appjicatiOn.from X2 intoR :
¥ Xi,xi e Xy » ¥ xz,xéle Xz-_,

d((x15%p) 5 (x12%30) = dy(xqsx]) +d5(x50%5) 3

d 1is denoted d; ® d, and called the direct_sum of d; and 'dz.

Proposition 1.19 : Let dl be a semimetric on a set Xl_and‘d2 a semimetric.

on a set X2 . Let us'assumevthat d1, and d2 are .Ll-embeddable-'

(resp. h-embeddable). Then _d1 +'d2 is LléembeddabTe:(resp. h-embeddable).

proof : It is clear that we have :
1 — \ <1 :
LY (T Bavy) @ L (To3d,v5) =L (T,Q,v)
where T is the disjoint union of T1 and T2 ,vﬁbvthe o-algebra whose restric-
tion to T, (resp. T,) ‘is‘fbl (resp. '2) and v the measure whose restriction
to T, (resp. T2) s vy (rgsp. V) 3
we have also pM o pM = pn*M for all e Nu {0} . O

Corollary 1.20: Let X be a set.

implies d; +'d, € h-P(X))




- proof : Let f be the diagonal application of X into X x X i.e.

¥xe X , f(x) = (x,x).
Then f 1is an embedding of (X,d1+d2) into (X’dl) ® (X,dz). Let us
assume that d1 and d2 are Ll-embeddable (resp. h-embeddable).
Then (using Proposition 1.19) d1 + d2 is Ll-embeddab1e (resp. h-embed-
dable) since a subspace of a subspace is a subspace.
Moreover it is clear that, if d s Ll-embeddable and a € [0,o[ , then

od is Ll—embeddab1e. O

We will define now some particular semimetrics on X which will be
shown in 1.25 to define certain extremal rays (in fact all) of the cone

P(X) :

the following form :

there is a partition Xps X, of X (i.e. XU X, =X, XN X, = @)

2 2

such that:

m(x,x') =1 for xe X, , x' e X5 and x e X, » x'e X{ o

m(x,x"') = 0 otherwise.

The set of all dichotomies on a set X 1is denoted II(X).

We give here three criterion (taken from[4 1) for a semimetric to

be a dichotomy ; the proof (easy) is left to the reader :

Lemma 1.22 : Let X be a set and d be an application from X2 into R ;

then the following are equivalent :
(1.22.1) d 1is a dichotomy on X ;
(1.22.2) the space (X,d) is a subspace (in the sense of 1.9) of a

hypercube K2 of dimension 1 ;

10.

Definition 1.21' : A dichotomy on a set X is a semimetric w on X having
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(1.22.3) d has values in {0,1} and satisfies the condition_of perimeter

- - — - - > - " - - -

(i.e., by definition, d(xl,xz) + d(xz,x3) + d(x3,x1) is even for each
XqsXosXg € X) s
(1.22.4) d has the following form :

d(x,x') = [1 - e(x)e(x"')] for all x,x'e X,

N =

where ¢ is an application X idinto {-1,1} .

(1.23) Let us observe that 1.22.2 implies that each dichotomy is h-embed-
dable (and thus Ll—embeddable). When X is finite, then there are exactly
(2|X|-1 - 1) non zero dichotomies on X and the convex cone generated by
studied by [151,[201,[7 1 and it is a polyhedral cone).

Let us denote D(X) the convex cone of all semimetrics on a given set X .

It was shown in Deza [17 ] that each non zero dichotomy, on a finite
set X , belongs to an extremal ray of the Hamming cone on X .

A more precise observation is made in Avis [8 ]:

Lemma 1.24 : Let X be a set. Then each dichotomy m on X belongs to

an extremal ray of the convex cone D(X) of all semimetrics on X .

proof : Let m be a dichotomy on X and let d,d' be elements of D(X)
such that d + d' = w . Assume that the dichotomy = 1is defined by the
partition (XI’XZ) of the set X (see 1.21).

Then for each x,xf e}Y1 (resp. Y2) we have m(x,x') =0 “and thus
d(x,x') = 0 . Hence the semimetric d identifies the points of Y1 (resp. Yz).
Therefore there is a nonnegative real o such that d =o 7 .

Thus m belongs to an extremal ray of D(X). O

(see Avis [ 8 ] for other extremal rays of D(X) ).
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(1.25) The dichotomies on X are elements of P(X) which belongs to some
extremal rays of the convex cone D(X) (which include P(X)) ; thus they
belong to an extremal ray of vP(X) . We wiT] see in §B that each extremal
ray of P(X) contains a non zero dichotomy ; as a consequence, if X is

finite, the Hamming cone on X (see 1.23) is nothing else than P(X).

1.B Extremal rays and finiteness :

We will see now that each Ll—embeddable (resp. h-embeddable) semimetric
is an integral of dichotomies with respect of a nonnegative measure (resp. a
nonnegative integer measure). Let us define first multiplicities :
(1.26) Let (X,d) be a Ll-embeddable semimetric space ;
let us fix f : x — A, 2 realization of (X,d) into (Q,&,n) and take
the corresponding blocks (see 1.13) AY =" {x e X | we AX} . Consider the

X will be endowed with the

set 2% = 10,13 of all subsets of X ; 2
o-algebra <QX generated by all projections from 2X onto {0,1} and we

define an application jX from X into gzx by setting :
Iy (%) = {YycX| xe Y} foreach xe X.

We note that the application F* : w—> A" is measurable from (2,0) dinto

(ZX,GZX) ; the nonnegative measure v = f*(u) will be called the multipli-

1

Proposition 1.27 : Let (X,d) be a L -embeddable semimetric space ;

let us take f : x — AX a realization of (X,d) into (Q,0,u) .
. . : : i . X
Then Jy X —» JX(X) will be a realization of (X,d) into (2 ’aX’Vf,u>
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proof : We have for each x,x' e X (x#x') :
ve (30 8 3,(x") = ve Y XY 0 (xx'}] = 1)

= ul o [A° 0 {Gx'3] = 1) = u(A, A AL) = d(xx!) . O

(1.28) We give a more explicit description of the multiplicity measure in
the case : (X,d) is h-embeddable and f : x-—»l%< is a h-realization of
(X,d) into Q . In this case the multiplicity measure will be shortly deno-

X defined as follows :

ted v and is the discrete measure on 2
for each Y e 2X , the weight of the measure Ve at the point Y 1is the
integer |{w | A® = Y }| i.e. the number of blocks equal to Y (this
Justifies ‘our terminology).

In fact we will get easily from the multiplicity measure a measure on
the set II(X) of all dichotomies having d for resultant :
(1.29) Thé set TI(X) of all dichotomies on the set X will be endowed
T —>m(Xx,x') from TI(X) dinto {0,1} ; for each Ye X we consider the
dichotomy ~m, defined by : my(x,x') = |1Y(x) - 1Y(x')| for all x,x' € X;
the app]icatibn g:Y¥—my is measurable from (ZX,QLX) into (H(X),be).

Proposition 1.30 {41 : (1.30.1) Let (X,d) be a Ll-embeddable semimetric
space. We fix a realization f of (X,d) into (Q.,&u) and we set

v = g(vf’u) (it is a nonnegative measure on (D(X),jgx)) . Then we have :
¥x,x' € X , d(x,x') = f m(X,Xx") v(dm)
m(X)

moreover if f dis a h-realization at scale n , then nv 1is a discrete

measure having values in N U {4o} (such a measure will be called an

(1.30.2) Conversely let v be a nonnegative measure on '(H(X)ﬁ%x) 5 we

set for each x,x' e X , d(x,x') = I x) w(x,x') v(dm)
: 11
d = I m v(dr) ) ;

(we will write shortly
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then (X,d) is Ll-embeddab1e ; if moreover nv 1is an integer measure

(for some ne ]10,+2[) , then (X,d) is h-embeddable at scale n .

proof : (1.30.1) From 1.27 -, we have for each x,x' e X :

d(x,x') = vf,u(jx(x) A jX(x')) = vf,ﬁ{Y I wY(x,X') = 1}

[ m(Xsx') v(dr) 3
n(X)

if moreover d 1is h-embeddable at scale n , then we see from 1.28 that

nv 1is an integer measure.

(1.30.2) Now Tet v be a nonnegative measure on '(H(X),:$X) and set
d= f m v(d w) . We fix a point s e X and we define for each x e X
an element A  of Q’X by setting

Ry = {m e T(X) | m(x,s) = 1} 3

it is clear that x — Ax 1"s a realization of (X,d) into (II(X),fBX,v).
If moreover nv is an integer measure, we call n thé cardinality of

I(X) and we define for each. x e X an element fx of Pg by setting :

£ (1) = v({r}) m(x,5) 3

it is clear that x —> f, isan (isometric) embedding of (X,nd) into
P"  and the result follows from 1.11. O

<o

Let us make an observation about dichotomies :
(1.31) Let = be a dichotomy on X and take X1sXosX3 € X
then one has n(xl,xz) = w(xl,xz) [w(xl,xs) + w(xz,x3)]
and n(xl,xz) w(xz,x3) ﬂ(X3,X1) =0
these obvious relations can be interpreted as the Pasch's axiom for
dichotomies
" The following result describes all extremal rays of the cone P(X)

(this result is due to [4] for infinite X, and to:[8]s[17] for finite X) :
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Proposition 1.32 : The extremal rays of the cone P(X) are exactly the rays

generated by the non zero dichotomies .

proof : From 1.256 we have only to prove that an element d of P(X) \ II(X)

satisfying d(x;,X,) = 1 for some XysX, € X cannot belong to an éxtremal ray of
P(X). -

Now take d e P(X) \IKX) and X1sX, € X with d(xl,xz) =13 since
d 1is not a dichotomy , we can find Xg € X such that d(xl,x3) =qa >0 ,
d(xz,x3) =B >0 3; up to a permutation , we can assume a = B ; now , from
1.30 , there is a nonnegative measure v on (H(X),qu) such that
d‘= f m v (dr) ~and we set d; = [ W(XI,XZ) w(xl,x3)w v(dr) and dé = d-dl;
then we have (using 1.31):

l+o- ‘ ' .
dl(xl’XZ) = +g B, 0, dl(xz,x3)=0 R d2(x2,x3) =B8>0; since d1 and d2

belong to P(X), the semimetric d cannot belong to an extremal ray of P(X).O

(1.33) On a finite set X , the Proposition 1.32 is implied obviously by
1.30 ; among easy consequences one can see that the convex cone P(X) is

closed (since it is the convex cone generated by the finite set II(X))

(1.34) We will see below that P(X) dis always closed for pointwise con-
vergence, even if X 1is infinite; but it will be not so easy. Let us explain
the reason of this difficd]ty :

(1.34.1) we will denote YS(X) the vector space of all applications
h: X2~—~5 R which are symmetric (i.e. h(x,x') = h(x',x) for all x,x' € X)
and vanish on the diagonal (i.e. h(x,x) =0 for all xe€ X) 3 S(X) and

its subset P(X) will be endowed with the topology of the pointwise

convergence (i.e. the restriction of the topology of RXXX); thus it is a

complete Tocally convex topological vector space ;

(1.34.2) IK(X) , as a topological subspace of S(X) , is compact (it is
implied by the triterion 1.22.3)
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(1.34.3) nevertheless, if X 1is infinite, P(X) 1is not a convex cone
with_compact basis (i.e. generated by a convex compact set not containing
0) : in fact , if X 1is infinite , II(X) \ {0} 1is not closed.

Now we are going to study the following question (for X infinite) :
let d be the Timit of an ultrafilter on P(X) s
is d an embeddable semimetric ? more explicitely , is there a measure
space (2,@,u) such that (X,d) is a subspace of K (Q2,@,u) ?

We will see first that the answer is yes.if we allow p to be only an
additive (noonegative) . measure (and not a o-additive one as in 1.2) :
(1.35) 1let (L be a Boole algebra (may be an abstract one) ; a (nonnegative)
additive measure on (& is an application pu : @ —3[0,+~ ] satisfying

u(@) =0 and u( u_ A;) = Z u(A;) for each finite family (A;) of
€

: v el jel
disjoints elements of (O ;

iel

the definition of K (@,u) (definition 1.8) will be carried out without

change from a o-additive measure to an additive one .

Proposition 1.36 [4 ]: Let W be a convergent ultrafilter on P(X)

(resp. h-P(X) , and set d_=Tim d (i.e. d_(x,x') = Tim d(x,x')
° d,% ° d, U
for all x,x' e X) . Then there is an algebra (L of subsets of a set @

and a nonnegative additive measure (resp. integer measure) By ON

(2,@) such that the space (X,d) 1is an (isometric) subspace of K ua,uo).

proof : For each de P(X) (resp. h-P(X)) we fix a e-additive nonnegative
measure (resp. integer measure) on (2X,Glx) such that jX is an embed-
ding of (X,d) into K (2°,@y.uy)

(Jy comes from 1.26 and the existence of such a measure ccmes from 1.27).
Now we set g, = lszud 3 c]eare]y'it exists (since [0,+» ]1s compact)

and it is a nonnegative additive measure (resp. integer measure) on (2X,ELX);

moreover we have :
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do(x,x') = U, (jX(x) A jX(x')) for a1l x,x'e X . O

Now we will see that the extension (made in 1.35) of the definition
of K(Q,@u) from a o-additive measure to an additive one is not really
an extension ; in fact the following result is known (Stone's compactifica-

tion, see for example [22 ] p.9 , see also [41):

Proposition 1.37 : Let Q. be a Boole algebra and let u be a nonnegative
additive measure (resp. integer measure) on @ . Then there is a o-algebra
@l\,of aset @ , a nonnegative g-additive measure (resp. integer mesure)

~

U on ('S\Z,(a) and an (isometric) embedding of K(@,u) into K Gz,ih,’ﬁ).

proof : Let use denote T the set of all ultrafilters on @ ; for each
Ae @ we set A={@eQ | A eB) . The set © will be endowed with the
topology generated by the applications »?I) ——-—>1X (®) 5 with this topology
Q isa compact space (the Stone's representation space) and A (for each
A€ ) is a subset of s whvich’is both open and closed. Moreover the
application A —~—>R is an isomorphism of Boole algebras from (@ into

(ﬂo = {?H A e U1} hence we can deﬁ'n’e a nonnegative additive measure My
on Q‘o by setting UO(R) = u(A) for each Aell . We obsérve_that the
algebra (D,o is ‘approximated}by_ a compact class (1‘n» fact (’Qo itself
which contains only compact subsets ‘of Q) with respect to Hg 3 thus ,
using the classical extension theorem (jwhi_ch is also true for measures
‘with v‘alues in [O,42 ] ) , we can extend - Vg into a nonnegative g-additive
measure 'ﬁ on the g-algebra La, geherated by (90 If moreover we assume
that u is an integeb measure, then clearely Ho and 7 (since

N U {+0} 1is closed in [0,+= ]) are also integer measures. O

As a corollary of 1.36 and 1.37 we obtain immediately :

Proposition 1.38 : Let X be a set (finite or infinite) ; then we have :
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(1.38.1) a pointwise limit (with respect to a filter) of Ll-embeddab1e
semimetrics on X is also a Ll-embeddable semimetric ;
(1.38.2) a pointwise limit (with respect to a filter) of h-embedabble

semimetrics on X 1is also a h-embedabble semimetric.

The statement 1.38.2 1is implicit in [4 Tand explicitely stated in[6 ].
The statement 1.38.1 1is due to Bretagnolle, Dacunha-Castelle,Krivine [ 11 }p.252 :
in fact it is given in [11 ] in the form of a result of finiténess (see below)
and proved as a corollary of a result of finiteness for normed spaces (it will
appear also as a particular case of some results of finiteness for some class€s
of kernels of positive type [4 ] ) . The proof used here
(through 1.36 and 1.37) comes from [ 4]

In fact the Proposition 1.38 can be written equivalently (straithforward,

2

Proposition 1.39 : Let d be an application from X into R .

Then d is an Ll-embedabble (resp. h-embeddable) semimetric on X if and
only if dlY is an Ll-embeddable (resp. h-embeddable) semimetric on Y

for each finite subset Y of X .

proof : We fix s e X ; for each finite subset Y of X , we define fy ¢ X — YU{s}
by setting fY(x)=x if xe Y and fY(x) =s if xe X\Y . Thus, for each
finite subset Y of X, dY = (dIYU{s}) o) fY is a Ll-embeddable (resp. h-embed-
dable) semimetric on X . To end, we observe that d is the limit of the semime-

trics dY (with respect to the filtering set of all finite subsets of X) and we

apply 1.38 . O

We observe that 1.39 gives some interest to the study of the finite
1
L"~embeddable (and h-embeddable) metric spaces (for the metric spaces of

cardinality < 5 , see Deza [ 15])

Another equivalent formulation of 1.38.1 consists to use inequalities
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of finite type :

(1.40) {5 1 The proposition 1.39 1implies that a semimetric d belongs to
P(X) if and only if the semimetric 1,j —3 d(x;>x5) belongs to P({1,..m})

for every choice of me N \{0} and of Xqs+-+sX, (not necessarily distincts)

m
elements of X ; we will call the elements of P'({l,...,m}) (the dual cone of

P({1,...,m}) inequalities_valid in L1 of order m and the elements of

S'({1,...,m} ) (the dual space of S{1,...,m}) inequalities_of order m ;

each inequality of order m will be think as a real symmetric m m matrix

a = (aij)i,je{l,",m } vanishing on the diagonal.

Now, for each application f : i —s X; of {1,...,m} idinto X,

the transpose of the operator d —» d o f (from S(X) onto S({1,...,m}) )
is an operator a —» a(xl,...,xm) from S'({l,...,m}) into S'(X) (the
dual space: of S(X)) which carries P'( 1,.;.,m ) into P'(X) (the dual
cone of P(X)).

More precisely we set for each de S(X) :

. n m
< a(XgseeeaXp)ed>= Z X a

il je1 1 A02%5) -

An element d of S(X) is said to satisfy the_inequality a of order m

if one has < a(xl,...,xm),d >2>0 for each XqsXpseeesX € X o

Thus an equivalent formulation of 1.30 and 1.38.1 réspéctivé1y is the
following :
(1.40.1) an inequality of order m ‘is valid in L1 if and only if it is

satisfied by all dichotomies ;

(1.40.2) a semimetric is Ll-embeddab1e if and only if it satisfies each

inequality valid in L1 :

Let us summarize the informations about P(X) :
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Proposition 1.41 [5 ] P(X) 1ds the closed convex cone generated by II(X)

(observé that, if X 1is infinite , P(X) has no compact basis, see 1.34.3).

To end, we give a useful corollary :
Lemma 1.42 : Let (T,B,u) be a measure space (u > 0) and consider an
application t — dt of T into P(X). We assume that the application
t— dt(x,x') is measurable for each x,x' e X .

Let us set d(x,x') = f dt(x,x') p(dt) for each x,x' € X and suppose
T

that it is finite for each x,x' e X .

Then d is an Ll-embeddable semimetric on X .

proof : a direct verification, or the following :

d satisfies each inequality valid in R thus, from 1.40.2 , it belongs

to P(X). O
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1.C Scale and conaition of the perimeter

We begin with some observations on the cone P(X) :
(1.43) The cone P(X) 1is a proper cone (a convex cone T is said to be
a proper_cone if one has TN (-T) =@ or {0} ) :
in fact P(X) is dincluded in D(X) which is a proper cone.

Moreover the convex cone P(X) has a non void interior (in S(X))
when X 1is a finite set ; in fact it is equivalent to show that II(X)
contains a basis of the vectorspace S(X) :

LEMMA 1.44 [17 ] : Let X be a finite set. Then the vector space S(X) (1.e.

2 —3> R vanishing

the vector space of all symmetric applications d : X
on the diagonal) has dimension ( lg' ) and the convex cone P(X) is
a polyhedral cone witﬁ a non empty interior in S(X). Precisely let us fix
s € X , and consider for each subset Y of X the dichotomy Ty 2ssO-

ciated to the partition (Y,X\Y) (see 1.29). Then {WYIY C X\ {s},|Y|=1 or 2}

is a basis of the vectorspace S(X) .

proof : The dimension of S(X) is obviously ( ‘él ) . Moreover the dicho-

tomies my . (for Y C X\({s}, Y] = 1 or2) form a basis of S(X) as can be

seen from the following explicit expansion :
for each de S(X) , we have :

(1.44.2) d = 2y Ay

with 2 ag5= 2 [d(xy) - d(ssy) 1- (|X]| - 4) d(s,Xx)
yeX
2 x{x’x.} = d(s,x) + d(s,x') - d(x,x")

and where the sum X 1is taken over all subsets Y of X\{s} such that
Y
Y] =1or2. ’

Hence the convex cone P(X) has a nonempty interior in S(X). O
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(1.45) In fact the set {“Y | YCX,|Y] =2} is a more symmetric basis,
but the expansion would be not so simple. For a finite set X , the above
Lemma means in particu]ar’that each semimetric on X (and more generally

1

each element of S(X)) is the difference od two L"-embeddable semimetrics

on X .

.The reason for'introducing hypercubes at scale n Ties in the following

Lemma which will be useful in finite combinatorics :

‘Lemma 1.46 [3 ] : Let d be an integervalued semimetric on a finite set
X . Then d is Ll-embeddable if and only if there is ne @N ]0 4o [

such that 'd 1s h-embeddable at scalen .

proof : The "if bart“ _1is obvious. For the}“only if part" , we take d

an integervalued embeddable éemimetric on a finite set X and we set

N = (lél) . Using 1.33 , 1.44 and the theorem of Caratheodory (see Bourbaki
[10 1 , chapter II , §2 , exercice 9) we see that there are N dichotomies

(1r_i)1.=1=,"_,N on X such that d can be expressed uniquely in the form

.21 a; T; with o, >0 for each i=1,...,N. The m's and d are inte-
1=

gérva]ued ; hence the ,ai‘s are all ratioha] numbers. Let n be a positive
integer such that o is an integer for each i=1,...,N . Then (using
Proposition 1.30) nd 1is h-embeddable. O

The above Lemma.a11qws us to define a quantity which is important
for the discrete metric spaces (and which was considered for the graphs
by Blake, Gilchrist [9 ]

1

(1.47) Let d be an integervalued L™-embeddable semimetric on a (finite
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or infinite) set X ; then the scale of _(X,d) (denoted n (X.d)) fis
the infimim of all numbers n e 10,+= [ such that (X,d) s h-embeddable
at scale n

(for'a finite X , it is allways finite, from 1.46 ; for an infinite X ,

the scale can be infinite).

An interesting but probably untractable: problem would be to charac-
terize the embeddable semimetrics on X wusing Tinear inequalities. We have
seen (in 1.40) that it is sufficient to take X Finite.

The problem of.recognizing.h-émbeddab]e semimetrics among Ll—embeddab]e
semimetrics is more'comp1icated ; only the following necessary condition is

known :

Proposition 1.48[15] : Let X be a set,and' d an h-embeddable semimetric

(see 1.22.3) which we recall here :

' d(xg2%y) + d(XysX3)+d(X55xq) s eveﬁ for each X, Xy» X5 € X .

proof : It comes from 1.22.3 and'1.30. Another proofﬁbonsists in the follo-
wing observation :
for each subsets A,B,C of a set Q , we have :

Inin ® 1

BAC 2.1,

g CAA =
with Z=(AUBUC)\(ANBNC). O

(1.49) We come baék now to the description of the realizations of a semi-
metricspace given in 1.13 and 1.15 . It will be interesting in some‘case

to restrict the support of the,mU]tip]icity measure (i.e. to use only a

subset of II(X)) or equivalently to get a realization with prescribed blocks :

- this question of support of the multiplicity measure was considered
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for discrete metric spaces by Deza, Rosenberg [ 18 ]
and, in fact, it is exactly the purpose of the block design theory but for
very particular semimetrics 5

- in a more geometric setting, the criterion of Djokovic [19 ] for the
h-embeddability of graphs and the results of Alexander [1]
and Ambartzumian [2 ] on the plane Buffon-Sylvester problem

give particularly good examples of this situation .

A very useful observation about realizations is the following :

(1.50) 1let (X,d) be an Ll-embeddab1e semimetric space and let us take

Fz2x —~+-AX a realization of (X,d) idinto (Q,@,u) 5 let us

fix a point s e X , then fl T X —-;'Ai = AX A AS is also a realization

of (X,d) in (Q, ,u) and it satisfies Al =@ 3 let us call

moreover v and vl the measures on II(X) corresponding to f and

fl respectively (frbm 1.30.1) , then one has v = vl . If f dis a
h-realization (i.e. a realization into (Q,||)) then this operation appears

only as the choice of an origin in the affine space of dimension || over Zé.

We end with an observation concerning the size (see 1.12) :

(1.51) Let d be a semimetric on a set X and take o € [O,+=[ ; we
will adopt here a multiplicative notation for thé element {-1,1} x X :

for each ee€ {-1,1} and each x € X , we will write ex for (e,X);
now the antipodal extension of size__g__of_(X,d) 1is the space ({-1,1}xX,d)

where d is defined as follows for each- ex , ¢'x' € {-1,1} x X :

ol

(ex,e'x') = d(x,x') if ¢ =¢'

al

(exse'x') = o - d(x,x') if e # ¢

(generally d is not a semimetric, but only an element of S ({-1,1} x X)).
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We have now the following result (a slight extension of a result of

Deza [16] on elliptic patterns) :

Lemma 1.52 : The antipodal extension of size o of a semimetric space
(X,d) 1is a 'Ll-embeddable (resp. h-embeddable) semimetric space if and

only if o 1is the size of a realization (resp. of a h-realization) of

(X,d).

proof : Let f: x—> A be a realization of (X,d) into (Q,@.u)
(resp. a h-realization of (X,d) into (Q,] |)) of size o ;

for each e'e {-1,1} and each BCQ weset ¢B=B if ¢ =+1 and
eB=Q\B if ¢=-1;then T:ex—de¢ A, is a realization of
({-1,1} x X , d) into (Q,@.u)

(resp. a h-realization of ({-1,1} x X , d) into (2,] |).

The converse is easy. 0O
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§2 THE CONVEX CONE OF ALL Ll-INEQUALITIES

We will study here the inequalities which are valid in L1 (or Ll-inequa]ities

for short), i.e. the inequalities which are satisfied by all metric subspaces of Ll.
This paragraph is divided into three sections :

2.A The polygonal inequalities, 2.B Examples and counterexamples,

2.C Otﬁer extremal inequalities .

Here are some preliminary definitions :

Definition 2.1. A Tlinear_inequality of finite type is

nothing but a mxm matrix a = ( } where m s

4,30, ¢ (1ymum
a positive integer called the order of the lTinear inequality.

Definition 2.2. Let X be a set and k a symmetric kernel on X .

Let a = (a be a linear inequality of finite type

1,391,3 ¢ {1,um}
~ adapted to F . We will say that k (or (X,k)) satisfies the ine-

R = T e

quality a if we have :

m m

X € X, T 2 3 ; ki{x,s%:) 2 0 3

¥X: X5t
o i i=1 j=1

(or for (X,k)) (Note that the xi's are not assumed to be distinct).

Moreover, let Xl’x2""’xm be elements of X , then the number

m m
ifl jfl 2 5 k(xi,xj) is denoted (a(xl,...,xm),k)

’2.3) If an inequality a is to be considered only for metric spaces ( or
more generally only for kernels vanishing on the diagonal), then the

diagonal entries s 4 have no interest and will not be given .
S
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2.A The polygonal inequalities :

We will -study first the polygonal inequalities (introduced by Deza [ 6 ]),
the most important example of Ll-inequa]ities, as will be seen in the

Proposition 2.14 .

Definition 2.4. Let n be a positive integer. The (2n+1)-polygonal

inequality Pons1 (resp. p2n) defined by :
.. 1
Pons1(153) = =3 A5 A

with Xl,...,kn =-1, An+1""’K2n+1 =1

|
(resp. p2n(1,3) = -5 Aj
With Apseeondy = =1 5 A gseasdy = 1),
Let Xqs...5X, .; be points of a set X ; we will often use,instead

of the notation p2n+1(x1,...,x2n+1); the "more bipartite” notation

p2n+1(x1,...,xn;xn+1,...,x2n+1) . Similarly we will often write

p2n(xl""’Xn;xn+1""’X2n) in place of p2n(x1,...,x2n).

Definition 2.5. Let m be an integer, m=>= 2 . Let ) = <A1’A2"'ﬂ’km)

be a m-tuple of real numbers. Then the Tinear inequality defined by

id i
m
is called a negative type ineguality if we have = X, =0 ;
i=1
it is said an hypermetric_inequality if the A.'s are_integers
m
and we have X Ai =13
i=1

more generally, we will set for each X = (Al,...,xm) in R" §

each XqseeesXp in X and each d 1in S(X) :

m m
(B (RypuaenX JdY ==2 B 2, &, Sk a%.),
b j=1 =1 13
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Notation 2.6. Let X be a set and d : X2 ~R a symmetric kernel on X

vanishing on the diagonal (i.e. an element of S(X)). We will say that d
satisfies all hypermetric inequa]itiés (resp. all inequalities of negative
type). Similarly we will say that d and also (X,d) is n-polygonal
if it satisfies the n-polygonal inequality.

We will use also an equivalent terminology for n-polygonal when

n=3,4,5,6,7,... :

for elements of S(X) (for some set X) i.e. for symmetric kernels

Before to stufy the relations between these inequalities, we wil
make clear the sense of the n-polygonal inequalities :
Remark 2.7. Let X be a set; take d an element of S(X) and n an
integer , n > 2 . Let XqsXgseeesXy be elements of X (they are

(i #J) external if i < g-< Jj » and jgggrgg_ otherwise.
Then d satisfies pn(xl,...,xn) if and only if :
the sum of the values of d on the internal pairs is not larger than
the sum of the values of d on the external pairs.

For small n , it gives the fb]]owing

(in each figure, the broken lines ------- will join external pairs,

the continuous lines

will join internal pairs) :



(2.7.1) 2-polygonal inequality :

<p2(x1;x2),d> = d(xl,xz)

(2.7.2) 3-polygonal inequality (or triangular inequality)

(p3(x1;x2,x3),d> =vd(x1,x2) + d(xl,x3) - d(x2,x3)

(In other terms d is 3-polygonal if and only if it is a semimetric)

(2.7.3) 4-polygonal inequality (or gquadrangular_inequality)

(p4(x1,x2;x3,x4),d)
= d(xl,x3) + d(xl,x4) + d(xz,x3) + d(xz,x4)
- d(xl,xz) - d(x3,x4)

We will see below in Proposition 2.9. that all semimetrics are quadran-

gular; in general a quadrangular function is only a pseudometric (see

Propositions 2.9 and example 2.15.4).

31



32

<p5(x1,x2;x3,x4,x5) ,d?

= d(xl,x3)+d(x1,x4)+d(x1,x5)+d(x2,x3)+d(x2,x4)+d(x2,x5)

- d(xl,xz) - d(x3,x4) - d(x3,x5) - d(x4,x5)

We will see below in Proposition 2.9 that a symmetric function d : X2 - R

vanishing on the diagonal and satisfying pentagonal inequality is necessary
a semimetric; but there are semimetrics which are not pentagonal (see
Example 2.15.6). The pentagonal inequality is certainly a very strong
inequality : for example one can show (see Assouad [2] )

that there are some metric spaces which cannot be Lipschitz embedded into

a pentagonal metric space .

Remark 2.8. We note that an element d of S(X) (i.e. a symmetric kernel
d: X2 -~ R vanishing on the diagonal) is of negative type if and only if
one has :
(2.8.1) V¥me N\ {0}, ¥ X1 9Xgses X € X, ¥ A sho sk € R

m m

m
T A, =0 = = T A A, d(X,.X
=l i=1 j=1 ' 3 7

IN
[ew]

1)

(By homogeneity the Xi's could be taken only in the set Z of

‘all integers).
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Similarly an element d of S(X) 1is hypermetric if and only if one has :
(2.8.2) Y¥YmeN\ {0}, ¥ XqsXgssXo € X o ¥ Aqshsssly € y4
m m m
Z o x=1= 2 T X As d(x;.x5) <0 .
= i=l §=1 ° A
Despite the striking similarity between (2.8.1) and (2.8.2) the hyper-
metricity is much sfronger than negative type (as will be seen in
Proposition 2.9 below).
The n-polygonal inequalities and the hypermetric inequalities were

introduced by Deza (Tylkin) in [6 1 and independently rediscovered by

Kelly [9 1 (to whom is due the terminology hypermetric).

We will show now the links between the different inequalities intro-
duced above :

Proposition 2.9. Let X be a set and d an element of S(X) (i.e. a

symmetric kernel d: X2 +~ R vanishing on the diagonal). Then we have :

(2.9.1) (J.B.Kelly [91 ) d 1is hypermetric if and only if d is
n-polygonal for each odd integer n ;
(2.9.2) d 1is of negative type if and only if d is n-polygonal
for each even integer n ;
(29.3) d 1is nonnegative if and only if d is 2-polygonal;
(2.9.4) d is asemimetric: if and only if d 1is 3-polygonal;
(2.9.5) if d 1is 4-polygonal, then d satisfies the following
inequality :

Voxpaxysxg € X5 d(Xyaxg) < 2[d(x5%p) + d(xqaxg)] 3
(2.9.6) (J.B.Kelly [91]) for each integer n > 4 , we have :

if d s n-polygonal , then d is (n-2)-polygonal;
(2.9.7) (Deza(Tylkin) [ 67]) for all integers n=>1 , Qe have

if d is (2n+l)-polygonal, then d is (2n+2)-polygonal ;

(2.9.8) if d is hypermetric, then d s a semimetric of negative type.
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proof : (We will use the notations Ppo by o hA introduced in the Defi-

nitions 2.4 and 2.5).
(2.9.1) We remark first that, for each integer n > 1 , one has :

h

2 Pops1 = Py

where ) = (Al""’A2n+1) with Ay = ... =), =-1 and

n
n+l
Aas1 = o0 = hopp = 1 (and thus 'izl A

1 ). In order to prove the converse,

be a m-tuple of integers with Ai =1 3
i=1

take XpsXosennsXy elements of X ; then (hx(xl’XZ""’xm)’d> is nothing

Tet A= (Apshpsees)

u.ME

i

m
~but 2 <p2n+1 yl,yz,...,yn;yn+1,...,y2n+1),d> where 2n+l = iil |Ail and
where the sequence Yne1Yne20 Yol (resp. yl,yz,...,yn) contains,

for each je {1,...,m} such that Xj'> 0 (resp. Aj < 0), the element
x; of X repeated IAj]-times.

(2.9.2) The proof is quite similar to that of (2.9.1).

(2.9.3) and (2.9.4) It was done in Remarks 2.7.1 and 2.7.2.

(2.9.5) In order to obtain the inequality one has only to see that

<p4(x1,x1;x2,x3),d) is nonnegative.

(2.9.6) Let us consider at first the case of odd n . Take n = 2r + 1
and let Xqs++-sXo. 15 ¥ be points of X ; we observe now that

(Pypq(XqsenvsX g 3XpaneesXy 1),d>  is nothing but

(p2r+1(x1,...,xr_1,y 3 y,xr,...,x2r_1),d> and it gives the result.

For the case of even n , the proof is the same.
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(2.9.7) Let XpsweesXps YyoeesYy be points of X . Then we have :

<p2n+2 Xl""’xn:yl’f"’yn)’d>

n

1 - .
= n-2 [ 'E]_ <p2n+1(xl”"’Xi""’Xn;yl”"’yn)’d)
i=
n
+ 121 (p2n+1(y1,...,yi,...,yn;xl,...,xn),d>]

(here the notation ii means that x; is ommitted).

(2.9.8) Assume now that d 1is hypermetric, then by (2.9.1) d is

n-polygonal for each odd n = 3 . Thus (using 2.9.7 and 2.9.6) d is
n-polygonal for each even n > 2 and therefore (from 2.9.2) d is of
negative type. On the other side, d 1is 3-polygonal and thus d is

a semimetric (see 2.9.4). O

The implications between the n-polygonal inequalities can be

presented by the following table :

2 é‘:"" 4 ; 6 g 8 @: ®essevece

(2.9.9) S Vi Vi

3 '¢= 5 g: 7 @: 9 @:nooo.oo

(where the numbers n = 2,3,4,... correspond to the n-polygonal inequa-
lities).

We will now give the inequalities for "covariances" which are the
counterparts of the above "metric" inequalities.

We will start with some definitions :

Definition 2.10. Let m be an integer, m=2 . Let X = (A;shys...nhy)

be a m-tuple of real numbers. Then the linear inequality defined by :



¥

A

- - - " - o o vl v v ———

Moreover if the _A.'s__are_integers

T#7

o
1]
>
>
[
v
-',

is denoted WA
Let X be a set ; a symmetric kernel k : X2 -~ R (but not

necessary vanishing on the diagonal) is called a hypermetric

covariance if it satisfies ﬁx for all m-tuple X of integers..

2

s__are_integers the linear inequality defined by :

Remark 2.11. We note that the symmetric kernels k : X

for all

+ R satisfying

m-uple X of real numbers (or, equivalently, for all m-tuples

A of integers) are exactly the real kernels of positive type

Proposition 2.12. Let X be a set ; take s

an element of S(X). Then we have :
(2.12.1) d is hypermetric (resp. of negative type) if and only if

K, d s an hypermetric covariance (resp. is of positive type)

{setting KS d(x,x") = %—[d(x;s) +d(x',s) -d(x,x"')] for each x,x'€X ).

(2.12.2) More precisely take (x "’Xn) a (n+l)-tuple of points of

0’

X and A = (Ao,...,xn) a (ntl)-tuple of real numbers. Then we have :

'i' .
(h}\(xo,xl,...,xn),d Y =2Xh 3:(x1,...,xn),Ks d>

n
for A.'s integers and Z A, =1,
i P _
Ay
and (h)\(xo,xl,...,xn),d> = 2(t.3: (Xl"“’xn)’Ks d >
n
for Ai's real numbers and z Ai =0,
i=0

where X = (Al,...,kn).

an element of X and d

36
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proof : It is clear that one has only to preve (2.12.2).

We will give only the proof for the hypermetric case ;

n
assume that all Ai's are integers and satisfy 2 Ay = 1
i=0
then a direct calculation gives :
n n
(2.12.3) - 2 T A A d(xseXs)
i=0 j=0 1 L

n n n
= B 2 ks Lo X:) = = . . 3 X
2 o 5 A1AJ k(x1 xJ) 2 A k(x1,x1)]

(where we have set k(x,x') = st (x,x') = %-[d(x,s) + d(x',s) = d(x,x")1)
and it is the result. O
The next two results will show that the negatiQe type inequalities
and hypermetric inequalities are related to isometric embeddings into Lz and L1

respectively.

The first result is classical (Schoenberg[10]) :

Proposition 2.13. Let X be a set ; take d an element of ~S(X).

Then d is of negative type if and only if (X,/d) 1is a metric subspace

of a space L2 (or equivalently of an Hilbert space).

proof : Let s be an element of X . By (2.12.1) , the kernel K. d
1§ of positive type. Therefore there exists an application: f of X into
an Hilbert space H such that :

Vox o, x'e X, K od(x,x')= (FOOLF(x"))y-

Therefore we have for each x,x' e X

d{x,x") Ks d(x,x) + K d(x',x") - 2 KS d(x,x")

1F(x) - F(x)I5 . O

I

The corresponding result for 11—spaces involves the hypermetric inequality
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but does not give a criterion : the hypermetric inequality appears only
as a necessary condition of embedding (it can be seen [1 ],[4 ] that it
is not sufficient) ; it is nevertheless sufficient for many classes of

metric spaces

Proposition 2.14. (Deza [ 61in the discrete case , Kelly [ 91in the general case).

Let X be a set and d a semimetric on it ; assume that d dis (isometrically)

embedable into L1 ; then d 1is hypermetric.

proof : Let s be a point of X . Using Proposition 2.12 we have only

to prove that KS d is an hypermetric covariance; by 1.50 one can choose
a realization x-_a,AX of (X,d) with As =9 ; thus there are

(2, @) a measurable space , u a nonnegative measure on it and x = A(x)

an application of X into @ such that :

ox' e X, Ko d(x,x') = u(A(x) NA(x")) .
Let X1oXps e e Xy be elements of X and X = (AI,AZ,...,AH) a n-uple

of integers. Then we have :

Ky(xpeoax ) » K d) = j [N () - N(w)Ty(dw)

with N(w) =

the function N 1is integer-valued , thus NZ-N is nonnegative ans it
gives the result. 0
Not that if we use in the proof N2 2 0 1instead of NZ -N=20,

then we obtain only that d 1is of negative type.

Now we will see that the converse of the implications (2.9.6) ,
(2.9.7) and (2.9.8) are not true ; it will be done in the next

section .



2.B Examples and counterexamples :

Examples 2.15.

example (2.15.1)
Let d be the . kernel on R defined as follows :
d(s,t) = (s—t)2 for each s,teR

Then d 1is of negative type, but d 1is not a semimetric (i.e. do

not satisfy the triangular inequality).

proof : It is well known that :

- the function d 1is of negative type (using Proposition 2.13) since it
is the square of the euclidean metric on R ;

- on the other side d is not a semimetric; one has for example :

d(0,2) =4 > 2 = d(0,1) + d(1,2). O

example (2.15.2) [3 ]

Let X be a set with |[X] =2N ; let X = X; UX, be a partition
of X into two subsets having N elements each. We will define an
element d of S(X) as follows :

d(x,x') =0 if x = x'

1 if x e Xl,x' € X2

"

a otherwise.
Let n be an integer (with n+2 < N). Then the following assertions
are equivalent :
(i) d s (2n+l)-polygonal ,
(ii) d s (2n+2)-polygonal ,
1

(iii) 0<a<1+ i

proof : For ae [0,1] , it is easy to see that d 1is embeddable into

Ll. For a > 1, one can check that d 1is (2n+l)-polygonal if

39
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),d> 1is nonnegative for each distinct

CPone1(Xqse oo oXpiXppyoe o sXonyg

elements Xqs-+-sX, Of X, and each distinct elements

Xn+1""’x2n+1 of X2 3

the same is true for (2n+2)-polygonal and it gives the result. U
The two above examples are sufficient to see that all the implica-
tions of the table 2.9.9 are irreversible .

Now we will give other illustrations.

example (2.15.3) [3 ]

Set X = {1,2,3} . We define an element d of S(X) as follows :

1

d(1,2) =2 , d(1,3) =5+a , d(2,3)=5-a

N =

and naturally, d(i,i)= 0 for each i =1,2,3.

Let n be an integer; then the following assertions are equivalent:
(i) d 1is (4n+2)-polygonal,
(i) d 1is (4n+4)-polygonal,

Co 1
(111) lal < 757 -
proof : an easy calculation. 0O
It is known that (see Deza [6 ] and also §3 below) :

- for |X]| 4 , a 3-polygonal function is necessary hypermetric;

N

- for |X| =5, a 5-polygonal function is necessary hypermetric (and,
in fact, it is embeddable into L1 in each case).
The above example (2.15.3) shows that, even for |[X| = 3 , none of the
even n-polygonal inequalities implies negative type.

example (215.4)(3 ]

Set X ={1,2,3} . We define an element d of S(X) as follows :

d(1,2) =2 , d(1,3) =1, d(2,3) =0
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and, naturally d(i,i) =‘0 for each i =1,2,3

(It is exactly example 2.15.3 for a = %—).

Then d .is 4-polygonal but not 3-polygonal.

Moreover, the only extremal rays of the convex xone of all 4-poly-

gonal functions on X ={1,2,3} correspond precisely to d and all

its permutations.
proof : easy. 0O

Each of the four next examples will consist of a graph G = (X,E).

More precisely in each case we will consider the set X of vertices of

G endowed with the following metric dG » called the truncated metric:

il
—
-
-h
x
Q
>
o

for each distinct vertices x,x' e X , set dG(x,x')

x' are adjacent (i.e. if (x,x') e E) and dg(x,x') =2 otherwise.

Note that the truncated metric will coincide here with the pathmetric

(except for 2.15.8).

example (2.15.5)

Let G be given by the following figure :

1
3 /RZ\ 5
3¢ e
N2

2

Then dG is of negative type, but dG is not 5-polygonal.
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proof : We remark that the application :

1 —20
8 4 — > e, + e
() & 2—=3( 2 e) , 30
i=1 55— eg + eg

3 —>e; t e,
; 8 : : ; .
of X idinto R~ (with its orthonorma] basis (ei)i c {l,m,8}) is an

isometric embedding of (X, V2 HG ) ‘into R8 with the euclidean metric.
Thus (using Proposition 2.13) dG is of negative tyne.
On the other side <p5(1,2;3,4,5),dG) is negative. O
On the contrary a normed space with a norm of negative type
X
(

is always embeddable into L' (see Bretagnolle, Dacunha-Castelle, Krivine [5 ]).

Note also that the application (i) describes the graph K1 3 asa
subgraph of the root system E8 ‘

example (2.15.6)

Let G be given by the following figure :

' 4\\:>,5 (i.e. it is the complete bipartite
ol graph K, 3)

Then d

G is not 6-polygonal (and thus not 5-polygonal).

proof : We have only to check that

( p6(1,1,2;3,4,5),dG > is negative . O
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example (2.15.7)

Let G be given by the following figure

1
3 4 5
2
Then d. is neither 5-polygonal nor 8-polygonal.

proof : We have only to check that

(p5(1,2;3,4,5),d G ) and <p8(1,1,2,2;3,4,5,5),d G)
are negative. 0O
example (2.15.8)

Let G be given by the following figure

1
3 4 5
2
Then d a is neither 5-polygonal nor 10-polygonal.

proof : We have only to check that

(pg(1,233,4,5),d G)'
and  (py(1,1,1,2,2;3,3,4,4,5),d o ) are negative. DI

(2.16) In fact, one can see that the graph K2 3 and its permutations
correspond to the only non embeddable extremal rays of the convex cone
of all semimetrics on X = {1,2,3,4,5} . Thus the example (2.15.6) is the

"fundamental" example of a non embeddable semimetric (the examples 2.15.5,

2.15.7 and 2.15.8 consist only to add or to drop an edge to K2 3) .
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2.C Other extremal inequalities :

by each metric subspace of L1 (see 1.40) ; it is called extremal if moreover

it:be1ongs to an extremal ray of the convex cone of all inequalities valid

1 of order m .

in L

For m s.5,;each extremal inequality is (see [6 ]) a multiple of a
polygonal inequality .

For m=6, the same result is probably true .

But, for m=7, the situation changes and one can give (Assouad [1 ]) a
Tinear inequality of order 7 which is extremal and is not a multiple of

a polygonal inequality :

Proposition 2;17"(A550uad [11). Let (X,d) be a fietric space

Suppose that_(x,d) is embeddable into Ll,, then we have forveach

X1sX5s...5X;  elements of X :
(2.17.1) 5 d(x,.x,) + 2 7id( i s
2.17. X1 9Xn) + b XosXs) + X 2 d{XssXs)
R
i 7 7
< X1sXaYt 3 T d(Xq,5X:) + 3 d(X,5%X,) + 2 T d(X,,X:).
iskglt 3 2 404 9 22%3) + 2 T d0gx;)

On the other side hypermetric‘metric spaces do not netessarily

satisfy the'inequality (2.17.1).

proof : See [ 1] .03
The dual (and independently found, Avis [4 ]) form of this result is that
there are some hypermetric spaces-(X,d)fﬁith X =7 which are not embeddable

into L1,

An interesting problem consists to determine all extremal hypermetric

inequalities on a given finite set (sée‘Deza (8]1) .
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An inequality is «wvalid in'L! if and only if it is satisfied by all
dichotomies (see 1.32) ; hence we obtain :

Proposition 2.18 (Assouad [ 31) Let a = (a; il be an

13)1 ,Je {1,.

(m,m) matrix which is real valued and symmetric. Let (ei)i ¢ {1,..,m}

be a sequence of -1 and +1 such that one has for each other

sequence (ni); . ,..m °f -1 and +1 :

. m m m m
(2.18.1) T X a..€:€s2 T T a,.n: M.
el g=1 YT ) e g W7

(255 &5 €5)4.5 € {1 m}. is an Ll-inequality.
1

In other terms we have (for each metric subspace (X,d) of L™ and

Then the matrix

each m-uple (xlg,..,xm) of elements of X ) :
m m
.18.2 T % a..esoes d(Xisxs) 20 .
(2.18.2) i a1J € €; d(x_I xJ) >0

Conversely (2.18.2) dimplies (2.18.1).

Proof : Let m: X,X' > 'llA(x) - lA(x‘)] be a dichotomy and set
n (x) = 2 13{x)-1 . We have for each x,x'e X :

()] = In(x)] =1 and w(xx') = [REL5 DO A2 L1 nn(x1))

_Thus we have for each xl,...,xm in X :

m m m m m m

2 T I a, d(x 2%y )= Z -2 2 a,.€; n(x )e N (

po
i=1 j=1 iJ 183 i=1 j= 1a1‘]€1€J =1 j=1 iji J)

The gives the result. O
Moreover, if the quadrat1c form z 2 a} g nj attains its maximal

=1 j=1
value at two different p1aces, then the corresponding inequalities are

above presentation, linked with sw1tching of graphs, §s due to [3] ).
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2.19 A list of extremal inequalities valid in L :

. We will

and of order 7

1

We 1ist here some inequalities valid on L°

use the following notation :

a = (aij)i,je{o,m,6} will be written

the inequality

(3913022303304 2205°3063212°313°314°315°31 65

a =

835854 5875 5896333333533 3852253356) -

Now we are going to give our list (due to [3 ]) :

al = (-1, 1,1,1,1,1;1, 1, 1, 1, 13

0,-1,-1, 0; 0,-1,-1; 0,-1; 0 )

a2 = ('19_1’ 0:'03 1, 1;'1, 1, 1, 1, 1;

1,1, 1, 1;-1,-1, 03 0,-15 0 )

a3=(1,0,1,0,1,1; 1,-1, 0, 0,-1;

1,-1, 0, 13 1,-1,~15 1, 15-1 )

a* = (-1,-1,-1, 1, 1, 13-1, 0, 0, 1, 13

0,1, 0, 15 1, 1, 15 0,~15-1 )

a®=(0,1,1,1,1,0;-1, 0, 1, 1, 13

-1, 0, 0, 15-1, 0, 13-1, 03-1)

b - (-1,-1, 0, 0, 1, 1; 0,-1, 1, 1, O;

1,-1, 0, 15 1, 1, 05 0, 15-1 )

al = (1,1,0,1,0,1;1,1, 0,0, 1;

-1, 0, 1, 03 1, 1, 03-1,-1,-1)

a8 = (-1,—1, 1, 1, 2, 2;‘1, 1, 19 2! 2;

1, 1, 2, 2; 0,-2,-13-1,-25-3 )

2’ = (-3,-3,-3,-3,-5, 55 1, 1, 1, 2,-2;

1, 1, 2,-25 1, 2,-2; 2,-23-3 )

210 - (-1,-1,-1, 2, 2, 33-1,~1, 2, 2, 3;

1y 25 25 35 25 2, 33-3,-55-b )
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