UNIVERSITÉ PARIS XI

U.E.R. MATHÉMATIQUE 91405 ORSAY FRANCE

2,5

no 167

Sur les théorèmes de Schwarz-Pick et Nevanlinna dans Cⁿ

Denise et Eric Amar

Analyse Harmonique d'Orsay 1975 25164 2,5

no 167

Denise et Eric Amar

Analyse Harmonique d'Orsay 1975 25164

Sur les théorèmes de Schwarz-Pick et Nevanlinna dans Cⁿ
par Denise et Eric Amar

Soit D le disque unité dans $\mathbb C$ et soit $H^\infty(D)$ l'algèbre des fonctions analytiques bornées dans D. Si $\left\{\mathbf z_1\dots \mathbf z_n\right\}\subset D$ et si $f\in H^\infty(D), \ \left\|f\right\|_\infty\leq 1,$ on pose $w_{\mathbf i}=f(\mathbf z_{\mathbf i}),\ \mathbf i=1,\dots n.$ On a alors $\left[1\right]$:

THEOREME 1 (Schwarz-Pick). La forme quadratique sur \mathbb{C}^n définie par : $\forall t = (t_1 \dots t_n) \in \mathbb{C}^n$ $Q_n(t) = \sum_{i \ j} \frac{1 - \overline{w}_i w_j}{1 - z_i \ \overline{z}_i} t_i \ \overline{t}_j$

est positive

Ce théorème admet la réciproque:

THEOREME 2. Soient $\left\{z_1 \ldots z_n\right\} \subset D$ et $\left\{w_1 \ldots w_n\right\} \subset D$ tels que la forme quadratique Q_n sur \mathbb{C}^n soit positive. Alors il existe $f \in H^\infty(D)$ telle que $\left\|f\right\|_{\infty} \leq 1$ et $f(z_i) = w_i$, $i = 1 \ldots n$.

Depuis Pick [2] et Nevanlinna [3] ces théorèmes ont été démontrés par un grand nombre d'auteurs [4] [5] [6] [7] [8].

Peut-on généraliser ces théorèmes dans la boule unité ou le polydisque de \mathbb{C}^n ?

On utilise les méthodes définies en $\boxed{6}$.

2. Cas de la boule.

 B_n désigne la boule unité de \mathbb{C}^n . Soient $\sigma = \{z_1 \dots z_k\} \subset B_n$ et $f\in H^{\infty}(B_{n}) \ \text{ telle que } \ \left\|f\right\|_{\infty} \leq 1. \ \text{ Pour déterminer l'analogue de la forme } \ Q_{w}$ ce cas, on considère le mesure de Lebesgue sur δB_n et la représentation π [6] i. e.

 $\forall g \in H^2(B_n), \quad \pi(f) g = P_{L^2} \overline{f} g$

où $P_{1,2}$ est la projection orthogonale sur $H^2(B)$.

Comme dans [6], on définit E_{σ} le sous-espace engendré par $\left\{k_{Z_i}, i=1..k\right\}$ où k_{z_i} est le noyau de Cauchy-Szegö associé à z_i . Alors E_{σ} est invariant par $\pi(f)$ et si $\pi_{\sigma}(f)$ est la restriction de $\pi(f)$ à \mathbf{E}_{σ} :

$$\left\|\pi_{\sigma}(f)\right\| \leq \left\|f\right\|_{H^{\infty}/I_{\sigma}} \leq \left\|f\right\|_{\infty}$$

où I_{σ} est l'idéal des fonctions de $\operatorname{H}^{\infty}$ qui s'annulent sur σ , d'où :

$$\|\pi_{\sigma}(\mathbf{f})\| \leq 1.$$

C'est-à-dire, que si $h = \sum_{i=1}^{k} h_i k_{z_i}, h_i \in \mathbb{C},$

$$||\mathbf{h}||^2 - ||\pi_{\sigma}(\mathbf{f})|\mathbf{h}||^2 \ge 0$$

$$0 \leq \frac{\sum h_i}{i} \frac{\bar{h}_j}{i} \left\langle k_{z_i} \right\rangle + \frac{\sum h_i}{i} \frac{\bar{h}_j}{i} f(\bar{z}_i) \left\langle k_{z_i} \right\rangle + \frac{k_{z_j}}{i}$$

$$0 \le \sum_{\mathbf{i}, \mathbf{j}} h_{\mathbf{i}} \bar{h}_{\mathbf{j}} \frac{1 - \bar{w}_{\mathbf{i}} w_{\mathbf{j}}}{(1 - \langle z_{\mathbf{i}}, z_{\mathbf{j}} \rangle)^{2}}$$

silton pose $w_i = f(z_i)$, i = 1...k.

La forme quadratique $Q_{\mathbf{W}.\sigma}^{}$ est définie par :

$$Q_{\mathbf{w},\sigma}(t) = \sum_{i,j=1}^{k} t_i \bar{t}_j \frac{1 - \bar{\mathbf{w}}_i \mathbf{w}_j}{(1 - \langle z_i, z_j \rangle)^2}.$$

On obtient donc l'analogue du théorème de Schwarz-Pick:

THEOREME 1'. Si $f \in H^{\infty}(B)$, $\|f\|_{\infty} \leq 1$, alors la forme quadratique $Q_{W,\sigma}$ est positive.

Remarque. On peut remplacer la mesure de Lebesgue sur δB_n par n'importe quelle mesure de probabilité sur \overline{B} .

Que peut-on dire de la réciproque ?

Elle est fausse à cause du contre exemple suivant.

THEOREME 3. Si D est le disque unité de \mathbb{C} , λ la mesure de Lebesgue et $H^2(\lambda)$ l'adhérence dans $L^2(\lambda)$ de A(D). Alors il existe une suite d'interpolation pour $H^2(\lambda)$ qui n'est pas d'interpolation pour $H^\infty(D)$.

Ce théorème admet en effet le corollaire suivant.

COROLLAIRE 1. Il existe une suite $\sigma \subset B_2$ qui est d'interpolation pour $H^2(B_2)$ et qui n'est pas d'interpolation pour $H^\infty(B_2)$.

Soit alors $\sigma = \left\{ \mathbf{z_i} \text{ , } i \in \mathbb{N} \right\} \subset \mathbb{B}_2$ une telle suite. Il existe une suite $\omega = (\omega_i)_i \in \ell^\infty(\mathbb{N})$ telle que, pour toute suite $(\mathbf{f_n})_{n \in \mathbb{N}} \subset \operatorname{H}^\infty(\mathbb{B}_2)$ vérifiant $\mathbf{f_n}(\mathbf{z_i}) = \omega_i$, $1 \leq i \leq n$, on ait

$$\lim_{n\to\infty} \left\| f_n \right\|_{\infty} = \infty.$$

Si σ est d'interpolation dans $H^2(B_2)$ de constante C, on a ($\lfloor 6 \rfloor$ Proposition p. 26), en notant $\sigma_n = \left\{ z_i, 1 \le i \le n \right\}$ $\omega^{(n)} = \left\{ \omega_i, 1 \le i \le n \right\}$,

$$\|\pi_{\sigma_{\mathbf{n}}}(\mathbf{f}_{\mathbf{n}})\| \leq C^2 \|\omega\|_{\infty}.$$

Si de plus $\|\omega\|_{\infty} \le \frac{1}{C^2}$, ce que l'on peut supposer, $\|\pi_{\sigma_n}(f_n)\| \le 1$ pour tout $n \in \mathbb{N}$.

D'où, pour tout n, $Q_{w(n),\sigma_n}$ est une forme quadratique positive sur \mathbb{C}^n .

3. Cas du polydisque.

$$\begin{split} & \Delta_n \quad \text{désigne le polydisque unité de } \mathbb{C}^n. \quad \text{On considère la mesure de Lebesgue} \\ & \text{sur le bord distingué} \quad T^n \quad \text{de} \quad \Delta_n \quad \text{et la représentation} \quad \Omega^* \quad \text{associée. On démontre,} \\ & \text{comme dans le cas de la boule} \quad B_n, \quad \text{que si} \quad \text{fCH}^\infty(\Delta_n), \quad \left\|f\right\|_\infty \leq 1, \\ & \text{si} \quad \sigma = \left\{z_1 \ldots z_k\right\} \subset \Delta_n \quad \text{où} \quad z_i = (z_i^1 \ldots z_i^n), \quad \text{si} \quad f(z_i) = w_i, \\ & Q_{w_\sigma} \quad \text{définie sur} \quad \mathbb{C}^k \quad \text{par} \\ & Q_{w_\sigma} \quad \text{définie sur} \quad \mathbb{C}^k \quad \text{par} \\ & Q_{w_\sigma} \quad \text{definie sur} \quad \mathbb{C}^k \quad \text{par} \\ & Q_{w_\sigma} \quad \text{out} \quad \text{o$$

est une forme quadratique positive.

La réciproque est dans ce cas aussi fausse. Le théorème 3 admet en effet le second corollaire suivant :

COROLLAIRE 2. Il existe une suite $\sigma \subset \Delta_2$ qui est d'interpolation pour $H^2(\Delta_2)$ et qui n'est pas d'interpolation pour $H^\infty(\Delta_2)$ dans $L^2(T^2)$.

Comme dans le cas de la boule on déduit l'existence pour tout $n \in \mathbb{N}$ d'une forme quadratique $\Omega_{w^{(n)},\sigma_n}$ positive sur \mathbb{C}^n telle que si $f_n \in H^\infty(\Delta_2)$ $f_n(z_i) = \omega_i$, $z_i \in \sigma_n$, $\omega_i \in \omega^{(n)}$, $\lim_{n \to \infty} ||f_n||_{\infty} = +\infty$. Toutefois, on obtient une réciproque du théorème de Schwarz-Pick si on considère toutes les mesures de probabilité portées respectivement par δB_n et T^n , cf [6], chap. I, § 4.

- 4. Démonstration du théorème 3 et de ses corollaires.
- a) λ est la mesure planaire sur D, $H^2(\lambda)$ est la fermeture de A(D) dans $L^2(\lambda)$. Pour $z\in D$, $K_z(\zeta)$ est le noyau reproduisant au point z dans $H^2(\lambda)$. On note E_z le vecteur unitaire de $H^2(\lambda)$

$$E_{\mathbf{z}}(\zeta) = \frac{K_{\mathbf{z}}(\zeta)}{\|K_{\mathbf{z}}\|} = \frac{1 - |\mathbf{z}|^2}{(1 - \bar{\mathbf{z}} \zeta)^2}.$$

Dans [6], on montre que la suite $(z_n)_{n\in\mathbb{N}}$ $(z_n)\subset D$ est l'interpolation I(C) pour $H^2(\lambda)$ si et seulement si l'opérateur S de $\ell^2(\mathbb{N})$ défini par la matrice $(\langle E_{\mathbf{Z}_n}^{}, E_{\mathbf{Z}_k}^{} \rangle)_{n,k}$ est bicontinu et vérifie : $||S|| \leq C^2$, $||S^{-1}|| \leq C^2$. Une suite d'interpolation de $H^\infty(D)$ est une suite d'interpolation pour $H^2(\lambda)$ [6].

b) Construction d'une suite d'interpolation de $H^2(\lambda)$ qui n'est pas d'interpolation pour $H^\infty(m)$.

Cette suite (σ) sera réunion de suites finies G_n de points situés sur un même cercle et équiréparties sur ce cercle

$$G_n = \left\{ z_k \mid z_k \mid = 1 - 2^{-g(n)} \text{ Arg } z_k = \frac{2k\pi}{2^{g(n)}} \quad 0 \le k \le 2^{9(n)} \right\}$$

où g est une fonction strictement croissante. G_n est la $n^{i \`{e}me}$ génération de la suite σ au sens de Garnett [9]. $\sigma = \bigcup_{n = 0}^{\infty} G_n$ n'est pas une suite d'interpolation de $H^\infty(D)$. En effet $\sum_{\mathbf{z}_i \in G_n} (1 - |\mathbf{z}_i|) = 1$ d'où la suite $\sum_{\mathbf{z}_i \in G} (1 - |\mathbf{z}_i|)$ est divergente. Par construction, chaque génération est un ensemble d'interpolation de $H^2(\lambda)$ pour une même constante C. On montre qu'on peut choisir une fonction g pour que σ soit d'interpolation pour $H^2(\lambda)$.

Démonstration. Soit S_p la matrice $(\langle E_{z_i}, E_{z_j} \rangle)_{ij}$, $z_i \in G_p$, $z_j \in G_p$. S_p est bicontinue et $\|S_p\| \le C^2$ $\|S_p^{-1}\| \le C^2.$

On note T_n la matrice $(\langle E_{z_i}, E_{z_j} \rangle)_{ij}$, $z_i \in \bigcup_{1}^n G_p$, $z_j \in \bigcup_{1}^n G_p$. On démontre par récurrence que T_n est une matrice inversible. Supposons $||T_n|| \leq K_n^2$ où $C^2 \leq K_n^2$ $||T_n^{-1}|| \leq K_n^2$.

où G est la matrice ($\langle E_{\mathbf{z}_k}^{}, E_{\mathbf{z}_p}^{} \rangle$, $\mathbf{z}_k \in \overset{n}{\underset{1}{\cup}} G_j$, $\mathbf{z}_p \in G_{n+1}^{}$). Si $\mathbf{z}_k \in G_j^{}$,

$$\begin{aligned} z_{p} \in G_{n+1} \\ |\langle E_{z_{k}}, E_{z_{p}} \rangle| &= \frac{(1 - |z_{k}|^{2})(1 - |z_{p}|^{2})}{|1 - \overline{z_{k}} z_{p}|^{2}} \\ &\leq \frac{4 2^{-g(j) - g(n+1)}}{[1 - (1 - 2^{-g(j)})(1 - 2^{-g(n+1)})]^{2}} \\ &\leq 4 2^{g(j) - g(n+1)} \\ |\langle E_{z_{k}}, E_{z_{p}} \rangle|^{2} &\leq 16 2^{2g(j) - 2g(n+1)} \end{aligned}$$

$$\sum_{\mathbf{z_k} \in G_j, \mathbf{z_p} \in G_{n+1}} \left| \langle \mathbf{E}_{\mathbf{z_k}}, \mathbf{E}_{\mathbf{z_p}} \rangle \right|^2 \le 16 \cdot 2^{3g(j) - g(n+1)}$$

d'où

La fonction g sera choisie telle que:

$$\sum_{n} \varepsilon(n) < \frac{1}{2C^2}.$$

La norme de Hilbert-Schmidt de la matrice $\,G\,$ est inférieure à $\,\epsilon(n).$

Si
$$\lambda \in \ell^2(2^{g(1)} + 2^{g(2)} + \ldots + 2^{g(n)} + 2^{g(n+1)})$$
 alors $\lambda = \mu + \nu$ où : $\mu \in \ell^2(2^{g(1)} + \ldots + 2^{g(n)}), \quad \nu \in \ell^2(2^{g(n)})$
$$||\lambda||^2 = ||\mu||^2 + ||\nu||^2$$

$$||T_{n+1} \lambda||^2 = ||T_n \mu + G \nu||^2 + ||G^{\infty} \mu + S_{n+1} \nu||^2$$

$$||T_{n+1} \lambda||^2 \le (K_n^2 ||\mu|| + \varepsilon(n) ||\nu||)^2 + (C^2 ||\nu|| + \varepsilon(n) ||\mu||)^2$$

$$\le [K^2 + \varepsilon(n)]^2 ||\lambda||^2$$

de même

$$\left|\left|T_{n+1}(\lambda)\right|\right|^{2} \ge \left[\frac{1}{K_{n}^{2}} - \varepsilon(n)\right]^{2} \left|\left|\lambda\right|\right|^{2}.$$

La matrice T_{n+1} de $\bigcup_{1}^{n+1} G_p$ vérifie donc

$$\left\|T_{n+1}\right\| \leq K_n^2 + \varepsilon(n)$$

$$\left|\left|T_{n+1}^{-1}\right|\right| \leq \frac{1}{\frac{1}{K_n^2} - \epsilon(n)}.$$

La matrice T de $\bigcup_{n} G_{n}$ vérifiera donc

$$||S|| \le C^2 + \sum_{n} \varepsilon(n) \le 2C^2$$

$$||S^{-1}|| \le \frac{1}{\frac{1}{C^2} - \sum_{n} \varepsilon(n)} \le 2C^2$$

d'où $\bigcup_{n} G_{n}$ est une suite d'interpolation pour $H^{2}(\lambda)$.

c) Démonstration du corollaire 1.

Si $\sigma = \left\{ z_i, i \in N \right\} \subset D$ est d'interpolation pour $H^2(\lambda)$ et n'est pas d'interpolation pour $H^{\infty}(D)$, on définit

$$\widetilde{\sigma} = \left\{ (z_i, 0), i \in \mathbb{N} \right\} \subset \mathbb{B}_2$$

 $\widetilde{\sigma}$ n'est pas d'interpolation pour $\operatorname{H}^{\infty}(\operatorname{B}_2)$ car si $\operatorname{g}(z,\omega)\in\operatorname{H}^{\infty}(\operatorname{B}_2)$ interpole $\omega\in \ell^{\infty}(\mathbb{N})$ sur $\widetilde{\sigma}$, la fonction f définie par $\operatorname{f}(z)=\operatorname{g}(z,0)$ interpole $\omega\in \ell^{\infty}(\mathbb{N})$ sur σ .

 $\tilde{\sigma}$ est l'interpolation pour $H^2(B_2)$. En effet les vecteurs $e_{(z_i,0)}$ unitaires dans $H^2(B_2)$, homothétiques des noyaux de Cauchy-Szegö vérifient $\langle e_{(z_i,0)}, e_{(z_j,0)} \rangle = \langle E_{z_i}, E_{z_j} \rangle$. D'où les vecteurs (E_{z_i}) et $(e_{(z_i,0)})$ définissent la même matrice.

- d) Démonstration du corollaire 2.
- $\sigma \quad \text{\'etant comme pr\'ec\'edemment, on d\'efinit} \quad \widetilde{\overline{\sigma}} = \left\{ (z_i, z_i), \quad i \in \mathbb{N} \right\} \subset \Delta_2.$ La démonstration est l'analogue de la démonstration du corollaire 1.

Bibliographie

- [1] AHLFORS, L. V. Complex Analysis. Mc Graw Hill International Student Edition, 1973.
- PICK, G. Uber die Beschränkungen analystischer Funktionen, welche durch vorgegebene Funktionswerke bewirkt werden. Math. Ann. 77 (1916), 7-23.
- NEVANLINNA, R. Uber beschränkte Funktionen die in gegebenen Punkten vorgeschriebene weste annehmen. Ann. Acad. Sci. Fenn, serie A 13 (1919), no 1.
- [4] Sz-NAGY, B. et KORANYI, A. Relations d'un problème de Nevanlinna et Pick avec la théorie des opérateurs de l'espace hilbertien. Acta Math. Acad. Sci. Hungar 7 (1956).
- [5] SARASON, D. Generalized interpolation in H[∞]. Trans. Amer. Math. Soc. 127, no 2 (1967).
- [6] AMAR, E. Méthodes hilbertiennes et interpolation dans le spectre d'une algèbre de Banach. Analyse Harmonique d'Orsay 152 (1975).

- [7] ADAMYAN, V. M., AROV, D. Z., KREIN, M. G. Infinite Hankel matrices and generalisations of the Caratheodory-Riesz problem and the F. Riesz problem. Funktional'Analiz. i Ego Prilozhen 2, no 1 (1968).
- [8] MARSCHALL, D. E. An elementary proof of the Pick-Nevanlinna interpolation theorem. Michigan Math. J. 21, no 3 (1975).
- [9] GARNETT, J. Interpolating sequences for bounded harmonic functions. Indiana Univ. Math. J. 21, no 3 (1971).

